相關習題
 0  263074  263082  263088  263092  263098  263100  263104  263110  263112  263118  263124  263128  263130  263134  263140  263142  263148  263152  263154  263158  263160  263164  263166  263168  263169  263170  263172  263173  263174  263176  263178  263182  263184  263188  263190  263194  263200  263202  263208  263212  263214  263218  263224  263230  263232  263238  263242  263244  263250  263254  263260  263268  266669 

科目: 來源: 題型:

【題目】設函數(shù)圖象上不同兩點,處的切線的斜率分別是,規(guī)定為線段的長度)叫做曲線在點與點之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點的橫坐標分別為,則;

②存在這樣的函數(shù),其圖象上任意不同兩點之間的“彎曲度”為常數(shù);

③設,是拋物線上不同的兩點,則 ;

④設, 是曲線是自然對數(shù)的底數(shù))上不同的兩點,則

其中真命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求常數(shù)k的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)設,且, 恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2

(I)若GDC的中點,求證:EG//平面BCF;

(II)若 ,求二面角 的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求實數(shù)的值,使得是函數(shù)唯一的極值點.

查看答案和解析>>

科目: 來源: 題型:

【題目】設橢圓的右頂點為A,下頂點為B,過AO、BO為坐標原點)三點的圓的圓心坐標為

(1)求橢圓的方程;

(2)已知點Mx軸正半軸上,過點BBM的垂線與橢圓交于另一點N,若∠BMN=60°,求點M的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設備。該設備每年的運轉(zhuǎn)費用是0.5萬元,此外,每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元。設該企業(yè)使用該設備年的年平均污水處理費用為(單位:萬元)

(1)用表示

(2)當該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設備。則該企業(yè)幾年后需要重新更換新的污水處理設備。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓)經(jīng)過兩點.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點,橢圓上一點滿足,求證: 為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy中,已知直線l過點P2,2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρρcos2θ4cosθ0.

1)求C的直角坐標方程;

2)若lC交于A,B兩點,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);

2)為研究潛伏期與患者年齡的關系,以潛伏期是否高于平均數(shù)為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下表格.

i)請將表格補充完整;

短潛伏者

長潛伏者

合計

60歲及以上

90

60歲以下

140

合計

300

ii)研究發(fā)現(xiàn),某藥物對新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司培訓員工某項技能,培訓有如下兩種方式:

方式一:周一到周五每天培訓1小時,周日測試

方式二:周六一天培訓4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓,分別估計員工受訓的平均時間精確到,并據(jù)此判斷哪種培訓方式效率更高?

在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

同步練習冊答案