相關習題
 0  263169  263177  263183  263187  263193  263195  263199  263205  263207  263213  263219  263223  263225  263229  263235  263237  263243  263247  263249  263253  263255  263259  263261  263263  263264  263265  263267  263268  263269  263271  263273  263277  263279  263283  263285  263289  263295  263297  263303  263307  263309  263313  263319  263325  263327  263333  263337  263339  263345  263349  263355  263363  266669 

科目: 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點,.

(1)證明:平面

(2)設二面角的正切值為,,求異面直線所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某企業(yè)有兩個分廠生產某種產品,規(guī)定該產品的某項質量指標值不低于130的為優(yōu)質品.分別從,兩廠中各隨機抽取100件產品統(tǒng)計其質量指標值,得到如圖頻率分布直方圖:

(1)根據頻率分布直方圖,分別求出分廠的質量指標值的眾數和中位數的估計值;

(2)填寫列聯(lián)表,并根據列聯(lián)表判斷是否有的把握認為這兩個分廠的產品質量有差異?

優(yōu)質品

非優(yōu)質品

合計

合計

(3)(i)從分廠所抽取的100件產品中,利用分層抽樣的方法抽取10件產品,再從這10件產品中隨機抽取2件,已知抽到一件產品是優(yōu)質品的條件下,求抽取的兩件產品都是優(yōu)質品的概率;

(ii)將頻率視為概率,從分廠中隨機抽取10件該產品,記抽到優(yōu)質品的件數為,求的數學期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:

A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;

B計劃:第一年完成項數不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。

那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數量

A. 按照A計劃完成的方案數量多

B. 按照B計劃完成的方案數量多

C. 按照兩個計劃完成的方案數量一樣多

D. 無法判斷哪一種計劃的方案數量多

查看答案和解析>>

科目: 來源: 題型:

【題目】在點處的切線.

(1)求證: ;

(2)設,其中.若恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】有甲、乙兩個班級進行數學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

甲班

10

b

乙班

c

30

總計105

已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(

參考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列聯(lián)表中c的值為30b的值為35

B.列聯(lián)表中c的值為15,b的值為50

C.根據列聯(lián)表中的數據,若按95%的可靠性要求,能認為成績與班級有關系

D.根據列聯(lián)表中的數據,若按95%的可靠性要求,不能認為成績與班級有關系

查看答案和解析>>

科目: 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2α4cosα=0.已知直線l的參數方程為為參數),點M的直角坐標為.

1)求直線l和曲線C的普通方程;

2)設直線l與曲線C交于A,B兩點,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知如圖1直角三角形ACB中,,,,點的中點,,將沿折起,使面,如圖2.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點P(-1,0),設不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點AB,若x軸是∠APB的角平分線,則直線l一定過點

A. ,0) B. (1,0) C. (2,0) D. (-2,0)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出的值分別為( )

(參考數據:

A. B.

C. D.

查看答案和解析>>

同步練習冊答案