相關(guān)習(xí)題
 0  263654  263662  263668  263672  263678  263680  263684  263690  263692  263698  263704  263708  263710  263714  263720  263722  263728  263732  263734  263738  263740  263744  263746  263748  263749  263750  263752  263753  263754  263756  263758  263762  263764  263768  263770  263774  263780  263782  263788  263792  263794  263798  263804  263810  263812  263818  263822  263824  263830  263834  263840  263848  266669 

科目: 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點C到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,,平面平面.

1)證明:平面.

2)設(shè)點是線段(不含端點)上一動點,當(dāng)三棱錐的體積為1時,求異面直線所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)過作直線,交(1)中軌跡兩點,若中點的縱坐標(biāo)為,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在之間,將測量結(jié)果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目: 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性;

(II)若存在兩個極值點,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】的二項展開式中,所有項的二項式系數(shù)之和為.

1)求展開式的常數(shù)項:

2)求展開式中所有奇數(shù)項的系數(shù)和.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,過橢圓Eab0)的左焦點F1x軸的垂線交橢圓EPQ兩點,點AB是橢圓E的頂點,且ABOP,F2為右焦點,△PF2Q的周長為8

1)求橢圓E的方程;

2)過點F1作直線l與橢圓E交于CD兩點,若△OCD的面積為,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案