科目: 來源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時間的統(tǒng)計數(shù)據(jù)如下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?
(3)以樣本中學(xué)生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計6名學(xué)生中一周參加社區(qū)服務(wù)時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在路邊安裝路燈:路寬米,燈桿長米,且與燈柱成120°角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直且正好通過道路路面的中線.
(1)求燈柱高的長度(精確到0.01米);
(2)若該路燈投射出的光成一個圓錐體,該圓錐體母線與軸線的夾角是30°,寫出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫出其相應(yīng)的幾何量(精確到0.01米).
查看答案和解析>>
科目: 來源: 題型:
【題目】給定橢圓,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點坐標(biāo)為,且過點.
(1)求橢圓的“伴橢圓”方程;
(2)在橢圓的“伴橢圓”上取一點,過該點作橢圓的兩條切線、,證明:兩線垂直;
(3)在雙曲線上找一點作橢圓的兩條切線,分別交于切點、使得,求滿足條件的所有點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計方案側(cè)面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當(dāng)時,若要求不超過45米,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】“90后”指1990年及以后出生,“80后”指1980-1989年之間出生,“80前”指1979年及以前出生.某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,對于一切,函數(shù)在區(qū)間內(nèi)總存在唯一零點,求的取值范圍;
(2)當(dāng)時,數(shù)列的前項和,若是單調(diào)遞增數(shù)列,求的取值范圍;
(3)當(dāng),時,函數(shù)在區(qū)間內(nèi)的零點為,判斷數(shù)列、、、、的增減性,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當(dāng)多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(1)求圓的方程;
(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;
(3)已知點,在平面內(nèi)是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標(biāo),若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com