相關習題
 0  264541  264549  264555  264559  264565  264567  264571  264577  264579  264585  264591  264595  264597  264601  264607  264609  264615  264619  264621  264625  264627  264631  264633  264635  264636  264637  264639  264640  264641  264643  264645  264649  264651  264655  264657  264661  264667  264669  264675  264679  264681  264685  264691  264697  264699  264705  264709  264711  264717  264721  264727  264735  266669 

科目: 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的極值;

2)設函數(shù),若函數(shù)恰有一個零點,求函數(shù)的解析式.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市對所有高校學生進行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學生的成績.

(1)計算這10名學生的成績的均值和方差;

(2)給出正態(tài)分布的數(shù)據:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估計從全市隨機抽取一名學生的成績在(76,97)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】比較甲、乙兩名學生的數(shù)學學科素養(yǎng)的各項能力指標值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數(shù)學抽象指標值為4,乙的數(shù)學抽象指標值為5,則下面敘述正確的是( )

A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力

B. 甲的數(shù)學建模能力指標值優(yōu)于乙的直觀想象能力指標值

C. 乙的六維能力指標值整體水平優(yōu)于甲的六維能力指標值整體水平

D. 甲的數(shù)學運算能力指標值優(yōu)于甲的直觀想象能力指標值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調查.

I)應從甲、乙、丙三個部門的員工中分別抽取多少人?

II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.

i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的分布列與數(shù)學期望;

ii)設A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標系中,動點與兩定點,連線的斜率之積為,記點的軌跡為曲線.

1)求曲線的方程;

2)已知點,過原點且斜率為的直線與曲線交于兩點(點在第一象限),求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為踐行綠水青山就是金山銀山的國家發(fā)展戰(zhàn)略,我市對某轄區(qū)內畜牧、化工、煤炭三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分數(shù)達到85分及其以上的單位被稱為環(huán)保單位,未達到85分的單位被稱為環(huán)保單位.現(xiàn)通過分層抽樣的方法確定了這三類行業(yè)共20個單位進行調研,統(tǒng)計考評分數(shù)如下:

畜牧類行業(yè):85,92,7781,89,87

化工類行業(yè):79,77,90,85,83,91

煤炭類行業(yè):87,89,76,84,75,94,9088

1)計算該轄區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

2)若從畜牧類行業(yè)這六個單位中,再隨機選取兩個單位進行生產效益調查,求選出的這兩個單位中既有環(huán)保單位,又有環(huán)保單位的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目: 來源: 題型:

【題目】中國古代數(shù)學經典《數(shù)書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PDM(異于點D),交PCN(異于點C.

1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司為了解所經銷商品的使用情況,隨機問卷50名使用者,然后根據這50名的問卷評分數(shù)據,統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據的中位數(shù);

2)從評分在[4060)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.

查看答案和解析>>

同步練習冊答案