科目: 來源: 題型:
【題目】圖1是某斜拉式大橋圖片,為了了解橋的一些結構情況,學校數學興趣小組將大橋的結構進行了簡化,取其部分可抽象成圖2所示的模型,其中橋塔、與橋面垂直,通過測量得知,,當為中點時,.
(1)求的長;
(2)試問在線段的何處時,達到最大.
圖1 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)所示,五邊形中,,,分別是線段的中點,且,現沿翻折,使得,得到的圖形如圖(2)所示.
圖(1) 圖(2)
(1)證明:平面;
(2)若平面與平面所成角的平面角的余弦值為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線平面,四邊形是正方形,且,點,,分別是線段,,的中點.
(1)求異面直線與所成角的大小(結果用反三角表示);
(2)在線段上是否存在一點,使,若存在,求出的長,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線,對坐標平面上任意一點,定義,若兩點,,滿足,稱點,在曲線同側;,稱點,在曲線兩側.
(1)直線過原點,線段上所有點都在直線同側,其中,,求直線的傾斜角的取值范圍;
(2)已知曲線,為坐標原點,求點集的面積;
(3)記到點與到軸距離和為的點的軌跡為曲線,曲線,若曲線上總存在兩點,在曲線兩側,求曲線的方程與實數的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數據,,,是上海普通職(,)個人的年收入,設這個數據的中位數為,平均數為,方差為,如果再加上世界首富的年收入,則這個數據中,下列說法正確( )
A.年收入平均數大大增大,中位數一定變大,方差可能不變
B.年收入平均數大大增大,中位數可能不變,方差變大
C.年收入平均數大大增大,中位數可能不變,方差也不變
D.年收入平均數大大增大,中位數可能不變,方差可能不變
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,為兩非零有理數列(即對任意的,均為有理數),為一無理數列(即對任意的,為無理數).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數.
(1)若滿足為上奇函數且為上偶函數,求的值;
(2)若函數滿足對恒成立,函數,求證:函數是周期函數,并寫出的一個正周期;
(3)對于函數,,若對恒成立,則稱函數是“廣義周期函數”, 是其一個廣義周期,若二次函數的廣義周期為(不恒成立),試利用廣義周期函數定義證明:對任意的,,成立的充要條件是.
查看答案和解析>>
科目: 來源: 題型:
【題目】某海域有兩個島嶼,島在島正東4海里處,經多年觀察研究發(fā)現,某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系.
(1)求曲線的標準方程;
(2)某日,研究人員在兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?
查看答案和解析>>
科目: 來源: 題型:
【題目】設各項均為整數的無窮數列滿足:,且對所有,均成立.
(1)寫出的所有可能值(不需要寫計算過程);
(2)若是公差為1的等差數列,求的通項公式;
(3)證明:存在滿足條件的數列,使得在該數列中,有無窮多項為2019.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com