科目: 來源: 題型:
【題目】九章算術(shù)是我國古代著名數(shù)學(xué)經(jīng)典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內(nèi)的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈尺寸,,)
A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;
(3)若不等式恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位長度,再將圖像上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到的圖像.
(1)求的單調(diào)遞增區(qū)間;
(2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表達式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略的不斷深入實施,高新技術(shù)企業(yè)在科技創(chuàng)新和經(jīng)濟發(fā)展中的帶動作用日益凸顯,某能源科學(xué)技術(shù)開發(fā)中心擬投資開發(fā)某新型能源產(chǎn)品,估計能獲得萬元的投資收益,現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵議案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎金不超過萬元,同時獎金不超過投資收益的.(即:設(shè)獎勵方案函數(shù)模擬為時,則公司對函數(shù)模型的基本要求是:當(dāng)時,①是增函數(shù);②恒成立;③恒成立.)
(1)現(xiàn)有兩個獎勵函數(shù)模型:(I);(II).試分析這兩個函數(shù)模型是否符合公司要求?
(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖,以過原點的直線的傾斜角為參數(shù),求圓的參數(shù)方程;
(2)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),若與相交于兩點,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù))。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用aij表示i行第j個數(shù)(i,j∈N+).此表中ail=aii=i,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.
(1)寫出數(shù)表的第六行(從左至右依次列出).
(2)設(shè)第n行的第二個數(shù)為bn(n≥2),求bn.
(3)令,記Tn為數(shù)列前n項和,求的最大值,并求此時n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com