相關習題
 0  265124  265132  265138  265142  265148  265150  265154  265160  265162  265168  265174  265178  265180  265184  265190  265192  265198  265202  265204  265208  265210  265214  265216  265218  265219  265220  265222  265223  265224  265226  265228  265232  265234  265238  265240  265244  265250  265252  265258  265262  265264  265268  265274  265280  265282  265288  265292  265294  265300  265304  265310  265318  266669 

科目: 來源: 題型:

【題目】已知橢圓的焦距為2,過點.

1)求橢圓的標準方程;

2)設橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于A,B兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校開設了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學經(jīng)訓練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設小明同學每次射擊的結果相互獨立.現(xiàn)對小明同學進行以上三次射擊的考核.

1)求小明同學恰好命中一次的概率;

2)求小明同學獲得總分的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,,,,,PA=PD=CD=BC=1.

(1)求證:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):

1)找出居民問卷得分的眾數(shù)和中位數(shù);

2)請計算這位居民問卷的平均得分;

3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線Cy=D為直線y=上的動點,過DC的兩條切線,切點分別為A,B.

1)證明:直線AB過定點:

2)若以E(0,)為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,圓臺的軸截面為等腰梯形,,,,圓臺的側面積為.若點C,D分別為圓上的動點且點C,D在平面的同側.

1)求證:;

2)若,則當三棱錐的體積取最大值時,求多面體的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)由頻率分布直方圖估計該校高三年級男生身高的中位數(shù);

2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點間的距離為,動點滿足,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】若數(shù)列滿足對任意正整數(shù),都存在正整數(shù),使得,則稱數(shù)列具有性質(zhì)”.已知數(shù)列為無窮數(shù)列.

1)若為等比數(shù)列,且,判斷數(shù)列是否具有性質(zhì),并說明理由;

2)若為等差數(shù)列,且公差,求證:數(shù)列不具有性質(zhì);

3)若等差數(shù)列具有性質(zhì),且,求數(shù)列的通項公式.

查看答案和解析>>

同步練習冊答案