科目: 來源: 題型:
【題目】已知兩動(dòng)圓和(),把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市《城市總體規(guī)劃(年)》提出到2035年實(shí)現(xiàn)“15分鐘社區(qū)生活圈”全覆蓋的目標(biāo),從教育與文化、醫(yī)療與養(yǎng)老、交通與購(gòu)物、休閑與健身4個(gè)方面構(gòu)建“15分鐘社區(qū)生活圈“指標(biāo)體系,并依據(jù)“15分鐘社區(qū)生活圈”指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為、良好小區(qū)(指數(shù)為0.4-0.63、中等小區(qū)(指數(shù)為0.2~0.4)以及待改進(jìn)小區(qū)(指數(shù)為0-0.2)4個(gè)等級(jí).下面是三個(gè)小區(qū)4個(gè)方面指標(biāo)值的調(diào)查數(shù)據(jù):
注:每個(gè)小區(qū)”15分鐘社區(qū)生活圈”指數(shù)其中、、、為該小區(qū)四個(gè)方面的權(quán)重,為該小區(qū)四個(gè)方面的指標(biāo)值(小區(qū)每一個(gè)方面的指標(biāo)值為之間的一個(gè)數(shù)值)
現(xiàn)有100個(gè)小區(qū)的“15分鐘社區(qū)生活圈“指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:
(1)分別判斷A、B、C三個(gè)小區(qū)是否是優(yōu)質(zhì)小區(qū),并說明理由;
(2)對(duì)這100個(gè)小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進(jìn)小區(qū)進(jìn)行分層抽樣,抽取10個(gè)小區(qū)進(jìn)行調(diào)查,若在抽取的10個(gè)小區(qū)中再隨機(jī)地選取2個(gè)小區(qū)做深入調(diào)查,記這2個(gè)小區(qū)中為優(yōu)質(zhì)小區(qū)的個(gè)數(shù)為ζ,求ζ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖中,,,、分別是、的中點(diǎn),將沿折起連結(jié)、,得到多面體.
(1)證明:在多面體中,;
(2)在多面體中,當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目: 來源: 題型:
【題目】2021年起,我省將實(shí)行“3+1+2”高考模式,某中學(xué)為了解本校學(xué)生的選考情況,隨機(jī)調(diào)查了100位學(xué)生,其中選考化學(xué)或生物的學(xué)生共有70位,選考化學(xué)的學(xué)生共有40位,選考化學(xué)且選考生物的學(xué)生共有20位.若該校共有1500位學(xué)生,則該校選考生物的學(xué)生人數(shù)的估計(jì)值為( )
A.300B.450C.600D.750
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率為。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別為,左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,記直線,的斜率分別為,,若,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直三棱柱的所有棱長(zhǎng)都是2,,分別是,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com