科目: 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)函數(shù)與的圖象有三個不同的交點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓上的一點到其左頂點的距離為.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(與點不重合),若以為直徑的圓經(jīng)過點,試證明:直線過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機對人院的名幼兒進行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請將下面的列聯(lián)表補充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱的底面是邊長為的正三角形,側(cè)棱底面為中點,分別為上的點,且滿足.
(1)求證:平面平面, ;
(2)若三棱錐的體積為,求三棱柱的側(cè)棱長.
查看答案和解析>>
科目: 來源: 題型:
【題目】垃圾種類可分為可回收垃圾、干垃圾、濕垃圾、有害垃圾等,為調(diào)查中學(xué)生對垃圾分類的了解程度,某調(diào)查小組隨機從本市一中高一的名學(xué)生(其中女生人)中,采用分層抽樣的方法抽取名學(xué)生進行調(diào)查,已知抽取的名學(xué)生中有男生人、
(1)求值及抽到的女生人數(shù);
(2)調(diào)查小組請這名學(xué)生指出生活中若干項常見垃圾的種類,把能準確分類不少于項的稱為“比較了解”,少于三項的稱為“不太了解”,調(diào)查結(jié)果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
男生(人) | 4 | 22 | 34 | 18 | 16 | 10 | 6 |
女生(人) | 0 | 15 | 20+m | 20 | 16 | 9 | m |
求值,完成如下列聯(lián)表,并判斷是否有的把握認為學(xué)生對垃圾分類的了解程度與性別有關(guān)?
不太了解 | 比較了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
(3)在(2)條件下,從抽取的“比較了解”的學(xué)生中仍采用分層抽樣的方法抽取名.再從這名學(xué)生中隨機抽取人作義務(wù)講解員,求抽取的人中至少一名女生的概率.
參考數(shù)據(jù):
,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.
(1)求橢圓的標(biāo)準方程;
(2)若直線:與橢圓相交于不同的兩點,,,若(為坐標(biāo)原點),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元),這些數(shù)字的背后,除了是消費者買買買的表現(xiàn),更是購物車里中國新消費的奇跡,為了研究歷年銷售額的變化趨勢,一機構(gòu)統(tǒng)計了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)(單位:十億元).繪制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
銷售額 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根據(jù)以上數(shù)據(jù)繪制散點圖,如圖所示.
(1)根據(jù)散點圖判斷,與哪一個適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及下表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點后一位)
(3)把銷售額超過10(十億元)的年份叫“暢銷年”,把銷售額超過100(十億元)的年份叫“狂歡年”,從2010年到2019年這十年的“暢銷年”中任取3個,求取到的“狂歡年”個數(shù)的分布列與期望.
參考數(shù)據(jù):.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】“辛卜生公式”給出了求幾何體體積的一種計算方法:夾在兩個平行平面之間的幾何體,如果被平行于這兩個平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項式函數(shù),那么這個幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線及軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個幾何體.利用辛卜生公式可求得該幾何體的體積( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=6sinθ,建立以極點為坐標(biāo)原點,極軸為x軸正半軸的平面直角坐標(biāo)系.直線l的參數(shù)方程是,(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點,且|AB|=,求直線的斜率k.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com