科目: 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點
(1)求橢圓的標準方程;
(2)設直線與交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高校健康社團為調(diào)查本校大學生每周運動的時長,隨機選取了80名學生,調(diào)查他們每周運動的總時長(單位:小時),按照共6組進行統(tǒng)計,得到男生、女生每周運動的時長的統(tǒng)計如下(表1、2),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達人”.
表1:男生
時長 | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時長 | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運動時長不小于20小時的男生中隨機選取2人,求選到“運動達人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認為本校大學生是否為“運動合格者”與性別有關(guān).
每周運動的時長小于15小時 | 每周運動的時長不小于15小時 | 總計 | |
男生 | |||
女生 | |||
總計 | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為F,點P為拋物線C上一點,,O為坐標原點,.
(1)求拋物線C的方程;
(2)設Q為拋物線C的準線上一點,過點F且垂直于OQ的直線交拋物線C于A,B兩點記,的面積分別為,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為做好創(chuàng)建國家生態(tài)文明單位的需要,某地甲、乙兩大型企業(yè)決定先從本企業(yè)的所有員工中隨機抽取8名員工,對自己所在企業(yè)的生態(tài)文明建設狀況進行自我內(nèi)部的評分調(diào)查(滿分100分),被抽取的員工的評分結(jié)果如右表:
(1)若分別從甲、乙兩企業(yè)被抽取的8名員工中各抽取1名,在已知兩人中至少一人評分不低于80分的條件下,求抽到的甲企業(yè)員工評分低于80分的概率;
(2)用樣本的頻率分布估計總體的概率分布,若從甲企業(yè)的所有員工中,再隨機抽取4名員工進行評分細節(jié)調(diào)查,記抽取的這4名員工中評分不低于90分的人數(shù)為,求的分布列與數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】設n∈N*且n≥2,集合
(1)寫出集合中的所有元素;
(2)設(,···,),(,···,)∈,證明“=”的充要條件是=(i=1,2,3,···,n);
(3)設集合={︳(,···,)∈},求中所有正數(shù)之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點M,使得CM∥平面DA?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著經(jīng)濟全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標和緊迫任務,在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.
(1)若某大學畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;
(2)現(xiàn)有2名大學畢業(yè)生在這15座城市中各隨機選擇一座城市就業(yè),且2人的選擇相互獨立,記X為選中月平均收入薪資高于8500元的城市的人數(shù),求X的分布列和數(shù)學期望E(X);
(3)記圖中月平均收入薪資對應數(shù)據(jù)的方差為,月平均期望薪資對應數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼懗鼋Y(jié)論)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,.對于函數(shù),若存在且,使得,則稱函數(shù)是“和諧”函數(shù).
(1)判斷函數(shù),是否是“和諧”函數(shù);(只需寫出結(jié)論)
(2)設函數(shù)是定義在上的周期函數(shù),其最小周期為,若不是“和諧”函數(shù),求的最小值.
(3)若函數(shù)是“和諧”函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com