福建省實(shí)驗(yàn)中學(xué)2008年4月高三質(zhì)量檢查試卷

         數(shù)學(xué)文科   2008.4

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.滿分150分.考試時(shí)間120分鐘.

參考公式:

如果事件A、B互斥,那么P(A+B)=P(A)+P(B)

如果事件A、B相互獨(dú)立,那么P(A?B)=P(A)?P(B)

如果事件A在一次試驗(yàn)中發(fā)生的概率是P,那么n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率

第Ⅰ卷(選擇題  共60分)

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1.已知全集U={a,b,c,d,e},A={c,d,e},B={a,b,e},則集合{a,b}可表示為

試題詳情

    A.AB         B.       C.       D.

試題詳情

2.函數(shù)的圖象

試題詳情

    A.關(guān)于x軸對(duì)稱                         B.關(guān)于直線對(duì)稱

試題詳情

    C.關(guān)于原點(diǎn)對(duì)稱                         D.關(guān)于直線對(duì)稱

試題詳情

3.在正項(xiàng)等比數(shù)列中,的方程為的兩根,則

    A.16               B.32               C.64               D.256

試題詳情

4.在正四面體P―ABC中,D、E、F分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是

    A.BC//平面PDF                          B.DF⊥平面PAE

    C.平面PDF⊥平面ABC                    D.平面PAE⊥平面ABC

試題詳情

5.已知非零向量 

試題詳情

    A.               B.2                C.               D.1

試題詳情

6.“”是“函數(shù)在區(qū)間上為增函數(shù)”的

    A.充分不必要條件                       B.必要不充分條件

    C.充要條件                             D.既不充分也不必要條件

試題詳情

7.已知是其定域上的增函數(shù),那么a的取值范圍是

    A.(0,1)                              B.(1,3) 

試題詳情

    C.(0,1)(1,3)                    D.(3,+

試題詳情

8.袋中有60個(gè)小球,其中紅色球24個(gè)、藍(lán)色球18個(gè)、白色球12個(gè)、黃色球6個(gè),從中隨機(jī)抽取10個(gè)球作成一個(gè)樣本,則這個(gè)樣本恰好是按分層抽樣方法得到的概率為

試題詳情

    A.                    B.

試題詳情

    C.                    D.

試題詳情

9.在區(qū)間[-1,3]上的最大值是

試題詳情

    A.-2              B.0                C.2                D.

試題詳情

10.如圖,在四面體O―ABC中,OA=OB=OC=1. ∠AOB=∠AOC=,則二面角

20080422

試題詳情

    A.               B.  

試題詳情

    C.               D.

試題詳情

11.若多項(xiàng)多

    A.509              B.510              C.511              D.1022

試題詳情

12.如圖,M是以A、B為焦點(diǎn)的雙曲線右支上任一點(diǎn),若點(diǎn)M到點(diǎn)C(3,1)與點(diǎn)B的距離之和為S,則S的取值范圍是 

試題詳情

    A. 

試題詳情

    B.

試題詳情

    C. 

試題詳情

    D.

第Ⅱ卷(非選擇題,共90分)

試題詳情

二、填空題:本大題共4小題,每題4分,共16分,把答案填在答題卡對(duì)應(yīng)題號(hào)的橫線上.

13已知的最小值是            .

試題詳情

14.從依次標(biāo)著數(shù)字0,1,2,3,4,5的六張?zhí)柎a牌中不放回地隨機(jī)選取兩張,這兩張?zhí)柎a牌的數(shù)字之和為5的概率是            .

試題詳情

15.如圖,A、B、C分別為橢圓的頂點(diǎn)與焦點(diǎn),若∠ABC=90°,則該橢圓的離心率為            .

試題詳情

16.對(duì)于函數(shù)定義域中任意的

試題詳情

  ②;

試題詳情

            ④

試題詳情

當(dāng)時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是            .

試題詳情

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出相應(yīng)的文字說(shuō)明,證明過(guò)程或演算步驟.

17.(本小題滿分12分)已知函數(shù)

試題詳情

   (1)求的定義域;

試題詳情

   (2)已知的值.

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分12分)如圖,P―ABC中,D是AC的中點(diǎn),PA=PB=PC=

   (1)求證:PD⊥平面ABC;

   (2)求二面角P―AB―C的大;

   (3)求AB的中點(diǎn)E到平面PBC的距離.

 

 

 

試題詳情

19.(本小題滿分12分)某公司以每噸10萬(wàn)元的價(jià)格銷售某種化工產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷售數(shù)量將減少mx%,其中m為正常數(shù).

試題詳情

   (1)當(dāng)時(shí),該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷售的總金額最大?

   (2)如果漲價(jià)能使銷售總金額增加,求m的取值范圍.

 

 

 

 

 

試題詳情

20.(本小題滿分12分)已知上不相同的兩個(gè)點(diǎn),l是弦AB的垂直平分線.

試題詳情

   (1)當(dāng)+取何值時(shí),可使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等?證明你的結(jié)論;

   (2)當(dāng)直線l的斜充為1時(shí),求l在y軸上截距的取值范圍.

 

 

 

 

 

試題詳情

21.(本小題滿分12分)在數(shù)列中,前n項(xiàng)和為

試題詳情

試題詳情

   (1)求數(shù)列是等差數(shù)列.

試題詳情

   (2)求數(shù)列{}的前n項(xiàng)和Tn.

 

 

 

 

 

 

 

 

 

試題詳情

22.(本小題滿分14分)已知是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn).點(diǎn)B的坐標(biāo)為(2,0),且的相反的單調(diào)性.

   (1)求c的值;

試題詳情

   (2)若函數(shù)上也有反的單調(diào)性,的圖象上是否存在一點(diǎn)M,使得在點(diǎn)M的切線斜率為3b?若存在,求出M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

   (3)求|AC|的取值范圍.

 

 

 

 

 

 

 

試題詳情

一、選擇題

20080422

二、填空題

13.2    14.   15.   16.①③④

三、解答題

17.解:(1)……………………3分

……………………6分

(2)因?yàn)?sub>

………………9分

……………………12分

文本框:  18.方法一:

(1)證明:連結(jié)BD,

∵D分別是AC的中點(diǎn),PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點(diǎn)E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

    過(guò)點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

    原點(diǎn),DE為x軸,DF為y軸,

    DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

    則D(0,0,0),P(0,0,),

    E(),B=(

    設(shè)上平面PAB的一個(gè)法向量,

    則由

    這時(shí),……………………6分

    顯然,是平面ABC的一個(gè)法向量.

    ∴二面角P―AB―C的大小是……………………8分

    (3)解:

    設(shè)平面PBC的一個(gè)法向量,

    是平面PBC的一個(gè)法向量……………………10分

    ∴點(diǎn)E到平面PBC的距離為………………12分

    19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷售總金額為:

       (2)

    ……………………3分

    當(dāng)

    當(dāng)x=50時(shí),

    即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷售總最大.……………………6分

    (2)由(1)

    如果上漲價(jià)格能使銷假售總金額增加,

    則有……………………8分

    即x>0時(shí),

    注意到m>0

      ∴   ∴

    ∴m的取值范圍是(0,1)…………………………12分

    20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

    當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

    當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過(guò)點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

    由已知可得………5分

    解得無(wú)意義.

    因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

    (2)由已知可設(shè)直線l的方程為……………………8分

    則AB所在直線為……………………9分

    代入拋物線方程………………①

    的中點(diǎn)為

    代入直線l的方程得:………………10分

    又∵對(duì)于①式有:

    解得m>-1,

    l在y軸上截距的取值范圍為(3,+)……………………12分

    21.解:(1)由

    ……………………3分

    又由已知

    ∴數(shù)列是以3為首項(xiàng),以-1為公差的等差數(shù)列,且…………6分

    (2)∵……………………8分

    …………①

    …………②………………10分

    ②―①得

    ……………………12分

    22.解:(1)和[0,2]上有相反的單調(diào)性,

    的一個(gè)極值點(diǎn),故

       (2)令

    因?yàn)?sub>和[4,5]上有相反的單調(diào)性,

    和[4,5]上有相反的符號(hào),

    ……………………7分

    假設(shè)在點(diǎn)M在點(diǎn)M的切線斜率為3b,則

    故不存在點(diǎn)M在點(diǎn)M的切線斜率為3b………………9分

       (3)∵的圖象過(guò)點(diǎn)B(2,0),

    設(shè),依題意可令

    ……………………12分

    ∴當(dāng)

    ……………………14分

     


    同步練習(xí)冊(cè)答案