題目列表(包括答案和解析)
設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設(shè)點P的坐標為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點P的坐標為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點P的坐標為.
由P在橢圓上,有
因為,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
解:(Ⅰ)設(shè):,其半焦距為.則:.
由條件知,得.
的右準線方程為,即.
的準線方程為.
由條件知, 所以,故,.
從而:, :.
(Ⅱ)由題設(shè)知:,設(shè),,,.
由,得,所以.
而,由條件,得.
由(Ⅰ)得,.從而,:,即.
由,得.所以,.
故.
已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當n=1時,,,故等式成立.
② 假設(shè)當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
在△中,∠,∠,∠的對邊分別是,且 .
(1)求∠的大;(2)若,,求和的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得
將 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
已知函數(shù)=.
(Ⅰ)當時,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,=,
當≤2時,由≥3得,解得≤1;
當2<<3時,≥3,無解;
當≥3時,由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當∈[1,2]時,==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com