題目列表(包括答案和解析)
(本題滿分15分)設(shè)橢圓:,直線過橢圓左焦點(diǎn)且不與軸重合,與橢圓交于,當(dāng)與軸垂直時(shí),,為橢圓的右焦點(diǎn),為橢圓上任意一點(diǎn),若面積的最大值為。
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓:交于兩點(diǎn),若,求的面積的取值范圍。
(本題滿分15分)設(shè)橢圓:,直線過橢圓左焦點(diǎn)且不與軸重合,與橢圓交于,當(dāng)與軸垂直時(shí),,為橢圓的右焦點(diǎn),為橢圓上任意一點(diǎn),若面積的最大值為。
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓:交于兩點(diǎn),若,求的面積的取值范圍。
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點(diǎn) 處的的切線方程;
(Ⅱ)若 對(duì)任意 恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)時(shí),.
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當(dāng)時(shí),.
,
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當(dāng)時(shí),在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當(dāng)時(shí),令,對(duì)稱軸,
則在上單調(diào)遞增,又
① 當(dāng),即時(shí),在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當(dāng)時(shí),, 不合題意,舍去 14分
綜上所述:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com