題目列表(包括答案和解析)
7. 解析:因為f(x)=3ax+1-2a在(0,1)上存在使,所以f(0)f(1)<0,即(1-2a)(a+1)<0所以
已知隨機變量Y的所有可能取值為1,2,…,n,且取這些值的概率依次為k,2k,…,nk,求常數(shù)k的值.
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
已知函數(shù)的圖像上兩相鄰最高點的坐標分別為和.(Ⅰ)求與的值;(Ⅱ)在中,分別是角的對邊,且求的取值范圍.
【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì)的綜合運用。
第一問中,利用所以由題意知:,;第二問中,,即,又,
則,解得,
所以
結(jié)合正弦定理和三角函數(shù)值域得到。
解:(Ⅰ),
所以由題意知:,;
(Ⅱ),即,又,
則,解得,
所以
因為,所以,所以
你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?
你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?
解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.
這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.這種思維方法叫化歸法.
化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.
1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.對此,談談你的看法.
2.我國古代數(shù)學研究一直處于領先地位,現(xiàn)在有所落后了,對此,我們不應只感嘆古人的偉大,而更應該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?
設函數(shù).
(Ⅰ) 當時,求的單調(diào)區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問中利用函數(shù)的定義域為(0,2),.
當a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
第二問中,利用當時, >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域為(0,2),.
(1)當時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);
(2)當時, >0, 即在上單調(diào)遞增,故在上的最大值為f(1)=a 因此a=1/2.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com