因為在上.所以.即 ----- 查看更多

 

題目列表(包括答案和解析)

7. 解析:因為f(x)=3ax+1-2a在(0,1)上存在使,所以f(0)f(1)<0,即(1-2a)(a+1)<0所以

已知隨機變量Y的所有可能取值為1,2,…,n,且取這些值的概率依次為k,2k,…,nk,求常數(shù)k的值.

查看答案和解析>>

已知曲線C:(m∈R)

(1)   若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;

(2)     設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。

【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得,所以m的取值范圍是

(2)當m=4時,曲線C的方程為,點A,B的坐標分別為

,得

因為直線與曲線C交于不同的兩點,所以

設點M,N的坐標分別為,則

直線BM的方程為,點G的坐標為

因為直線AN和直線AG的斜率分別為

所以

,故A,G,N三點共線。

 

查看答案和解析>>

已知函數(shù)的圖像上兩相鄰最高點的坐標分別為.(Ⅰ)求的值;(Ⅱ)在中,分別是角的對邊,且的取值范圍.

【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì)的綜合運用。

第一問中,利用所以由題意知:;第二問中,,即,又,

,解得,

所以

結(jié)合正弦定理和三角函數(shù)值域得到。

解:(Ⅰ),

所以由題意知:;

(Ⅱ),即,又

,解得,

所以

因為,所以,所以

 

查看答案和解析>>

雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.

  這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.這種思維方法叫化歸法.

  化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.

1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學家贊嘆不已.對此,談談你的看法.

2.我國古代數(shù)學研究一直處于領先地位,現(xiàn)在有所落后了,對此,我們不應只感嘆古人的偉大,而更應該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?

查看答案和解析>>

設函數(shù)

(Ⅰ) 當時,求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域為(0,2),.

當a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域為(0,2),.

(1)當時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>


同步練習冊答案