[點評]若試題給出的是單純的線性規(guī)劃問題.則百味全無.而命題者悄悄地將換成.同學們在解題過程中必須看透這一伎倆.將數(shù)列問題轉(zhuǎn)化為線性規(guī)劃問題.頓覺簡單異常.本題設計遵循基礎與能力并重.知識與能力并舉的原則.意在考查等差數(shù)列的通項公式.前項和公式以及不等式性質(zhì)等知識,但實在考查數(shù)形結(jié)合的思想方法.[總結(jié)提煉]綜上.我們主要介紹了填空題幾種常見的解法.當然解法會很多.所以我們要在平時注意發(fā)現(xiàn).探索.總結(jié).小題終究是小題.只要多思考.多挖掘新方法.巧方法.那我們解題時才有事半功倍的效果. 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎上求解點到直線的距離。

【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學習也是一個需要練習的方向。

 

 

查看答案和解析>>

△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。

【解析】本試題主要考查了解三角形的運用,

因為

【點評】該試題從整體來看保持了往年的解題風格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。

 

查看答案和解析>>

則給出的數(shù)列{第34項為(  )

    A. 1/103             B.1/100              C.103               D.100

 

查看答案和解析>>

求圓心在直線上,且經(jīng)過原點及點的圓的標準方程.

【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設圓心C的坐標為(),然后利用,得到,從而圓心,半徑.可得原點 標準方程。

解:設圓心C的坐標為(),...........2分

,即

,解得........4分

所以圓心,半徑...........8分

故圓C的標準方程為:.......10分

 

查看答案和解析>>

已知函數(shù)

(I)     討論f(x)的單調(diào)性;

(II)   設f(x)有兩個極值點若過兩點的直線I與x軸的交點在曲線上,求α的值。

【解析】本試題考查了導數(shù)在研究函數(shù)中的運用。第一就是三次函數(shù),通過求解導數(shù),求解單調(diào)區(qū)間。另外就是運用極值的概念,求解參數(shù)值的運用。

【點評】試題分為兩問,題面比較簡單,給出的函數(shù)比較常規(guī),,這一點對于同學們來說沒有難度但是解決的關鍵還是要看導數(shù)的符號的實質(zhì)不變,求解單調(diào)區(qū)間。第二問中,運用極值的問題,和直線方程的知識求解交點,得到參數(shù)的值。

(1)

 

查看答案和解析>>

1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.

2. ∵,令,所以,當時,,當時,,所以當時,.

3.∵,∴,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且關于直線對稱,關于直線對稱,∴;若,滿足條件的)存在,且,關于直線對稱,,關于直線對稱,

4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

,點到點的距離最大,此時的最大值為

,點到點的距離最大,此時的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴,

,,則.

作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當它經(jīng)過點時,取得最小值.

解方程組,得,∴


同步練習冊答案