題目列表(包括答案和解析)
已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l
(I) 求r;
(II) 設m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。
【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎上求解點到直線的距離。
【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學習也是一個需要練習的方向。
△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。
【解析】本試題主要考查了解三角形的運用,
因為
【點評】該試題從整體來看保持了往年的解題風格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。
若則給出的數(shù)列{第34項為( )
A. 1/103 B.1/100 C.103 D.100
求圓心在直線上,且經(jīng)過原點及點的圓的標準方程.
【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設圓心C的坐標為(),然后利用,得到,從而圓心,半徑.可得原點 標準方程。
解:設圓心C的坐標為(),...........2分
則,即
,解得........4分
所以圓心,半徑...........8分
故圓C的標準方程為:.......10分
已知函數(shù)
(I) 討論f(x)的單調(diào)性;
(II) 設f(x)有兩個極值點若過兩點的直線I與x軸的交點在曲線上,求α的值。
【解析】本試題考查了導數(shù)在研究函數(shù)中的運用。第一就是三次函數(shù),通過求解導數(shù),求解單調(diào)區(qū)間。另外就是運用極值的概念,求解參數(shù)值的運用。
【點評】試題分為兩問,題面比較簡單,給出的函數(shù)比較常規(guī),,這一點對于同學們來說沒有難度但是解決的關鍵還是要看導數(shù)的符號的實質(zhì)不變,求解單調(diào)區(qū)間。第二問中,運用極值的問題,和直線方程的知識求解交點,得到參數(shù)的值。
(1)
1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.
2. ∵,令得,所以,當時,,當時,,所以當時,.
3.∵,∴,,又,∴,則,所以周期.作出在上的圖象知:若,滿足條件的()存在,且,關于直線對稱,,關于直線對稱,∴;若,滿足條件的()存在,且,關于直線對稱,,關于直線對稱,
∴.
4. 不等式()表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當,點到點的距離最大,此時的最大值為;
當,點到點的距離最大,此時的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵,∴,
設,,則.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則,它表示斜率為的一組平行直線,易知,當它經(jīng)過點時,取得最小值.
解方程組,得,∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com