某人定制了一批地磚. 每塊地磚 是邊長(zhǎng)為米的正方形.點(diǎn)E.F分別在邊BC和CD上. △.△和四邊形均由單一材料制成.制成△.△和四邊形的三種材料的每平方米價(jià)格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設(shè).能使中間的深色陰影部分成四邊形. 查看更多

 

題目列表(包括答案和解析)

某人定制了一批地磚. 每塊地磚 (如圖1所示)是邊長(zhǎng)為米的正方形,點(diǎn)EF分別在邊BCCD上, △、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價(jià)格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形.

 (1) 求證:四邊形是正方形;

(2) 在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

查看答案和解析>>

19.某人定制了一批地磚.每塊地磚(如圖1所示)是邊長(zhǎng)為米的正方形,點(diǎn)E、F分別在邊BCCD上,△、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價(jià)格之比依次為3:2:1.若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形.

      

       圖1                         圖2

(1) 求證:四邊形是正方形;

(2) 在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最省?

查看答案和解析>>

某人定制了一批地磚. 每塊地磚 (如圖1所示)是邊長(zhǎng)為米的正方形,點(diǎn)EF分別在邊BCCD上, △、△和四邊形均由單一材料制成,制成△、△和四邊形的三種材料的每平方米價(jià)格之比依次為3:2:1. 若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形.


(1) 求證:四邊形是正方形;
(2) 在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

查看答案和解析>>

某人定制了一批地磚.每塊地磚〔如圖(1)所示〕是邊長(zhǎng)為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格之比依次為3∶2∶1.若將此種地磚按圖(2)所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.

(1)求證:四邊形EFGH是正方形.

(2)E、F在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

(1)

(2)

查看答案和解析>>

某人定制了一批地磚.每塊地磚(如圖1所示)是邊長(zhǎng)為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,且CE=CF,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格之比依次為3:2:1.若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.問(wèn)E、F在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當(dāng)a=1時(shí), B=,滿足;                           ………… 5分

當(dāng)時(shí),B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實(shí)數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點(diǎn)按順時(shí)針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費(fèi)用為,制成△、△和四邊形三種材料的每平方米價(jià)格依次為3a2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當(dāng)時(shí),有最小值,即總費(fèi)用為最省. 

    答:當(dāng)米時(shí),總費(fèi)用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為恒成立.解得.………………… 3分

因此的對(duì)稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無(wú)極值;

②     若,則當(dāng)時(shí),;當(dāng)時(shí),.

當(dāng)時(shí),有極小值在區(qū)間上存在極小值,.

③     若,則當(dāng)時(shí),;當(dāng)時(shí),.

*當(dāng)時(shí),有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當(dāng)時(shí),在區(qū)間上存在極小值。………… 12分

20. 解:(Ⅰ)當(dāng)時(shí),

,即數(shù)列的通項(xiàng)公式為       …… 4分

 (Ⅱ)當(dāng)時(shí),

當(dāng)               

                                …… 8分

由此可知,數(shù)列的前n項(xiàng)和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域?yàn)锳=,設(shè)函數(shù)的值域B,若對(duì)于任意總存在,使得成立,只需。               …… 6分

顯然當(dāng)時(shí),,不合題意;

當(dāng)時(shí),,故應(yīng)有,解之得: ;…… 8分

當(dāng)時(shí),,故應(yīng)有,解之得:! 10分

綜上所述,實(shí)數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯(cuò)位相減法得:,

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項(xiàng)為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案