題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)
閱讀下面內(nèi)容,思考后做兩道小題。
在一節(jié)數(shù)學(xué)課上,老師給出一道題,讓同學(xué)們先解,題目是這樣的:
已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。
題目給出后,同學(xué)們馬上投入緊張的解答中,結(jié)果很快出來(lái)了,大家解出的結(jié)果有很多個(gè),下面是其中甲、乙兩個(gè)同學(xué)的解法:
甲同學(xué)的解法:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同學(xué)的解法是:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果課堂上老師讓你對(duì)甲、乙兩同學(xué)的解法給以評(píng)價(jià),你如何評(píng)價(jià)?
(Ⅱ)請(qǐng)你利用線性規(guī)劃方面的知識(shí),再寫(xiě)出一種解法。
(本小題滿(mǎn)分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則令,
則,
當(dāng)時(shí),;當(dāng)時(shí),
在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時(shí),函數(shù)取得極大值. (3分)
函數(shù)在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調(diào)遞增, (7分)
,從而,故在上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時(shí),恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
((本小題共13分)
若數(shù)列滿(mǎn)足,數(shù)列為數(shù)列,記=.
(Ⅰ)寫(xiě)出一個(gè)滿(mǎn)足,且〉0的數(shù)列;
(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;
(Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得=0?如果存在,寫(xiě)出一個(gè)滿(mǎn)足條件的E數(shù)列;如果不存在,說(shuō)明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿(mǎn)足條件的E數(shù)列A5。
(答案不唯一,0,1,0,1,0也是一個(gè)滿(mǎn)足條件的E的數(shù)列A5)
(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。
某港口的水深(米)是時(shí)間(,單位:小時(shí))的函數(shù),下面是每天時(shí)間與水深的關(guān)系表:
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
經(jīng)過(guò)長(zhǎng)期觀測(cè), 可近似的看成是函數(shù),(本小題滿(mǎn)分14分)
(1)根據(jù)以上數(shù)據(jù),求出的解析式。
(2)若船舶航行時(shí),水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時(shí)間可以安全的進(jìn)出該港?
【解析】第一問(wèn)由表中數(shù)據(jù)可以看到:水深最大值為13,最小值為7,,
∴A+b=13, -A+b=7 解得 A=3, b=10
第二問(wèn)要想船舶安全,必須深度,即
∴
解得: 得到結(jié)論。
已知遞增等差數(shù)列滿(mǎn)足:,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時(shí),;當(dāng)時(shí),;
而,所以猜想,的最小值為. …………8分
下證不等式對(duì)任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時(shí),,成立.
假設(shè)當(dāng)時(shí),不等式成立,
當(dāng)時(shí),, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式, …………10分
, …………12分
所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com