題目列表(包括答案和解析)
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問中,作MNAE,垂足為N,連接DN
因為AOEO, DOEO,EO平面AOD,所以EODM
,因為AODM ,DM平面AOE
因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因為AOEO, DOEO,EO平面AOD,所以EODM
,因為AODM ,DM平面AOE
因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
設函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學。科。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網(wǎng)Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調(diào)遞減;當時單調(diào)遞增,故當時,取最小值
于是對一切恒成立,當且僅當. 、
令則
當時,單調(diào)遞增;當時,單調(diào)遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
設A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得.又因為,所以,
于是,,
所以,當,且時,取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且,因此,不妨設,
且。
由得定義知,,
又因為
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com