C. 查看更多

 

題目列表(包括答案和解析)


C.選修4—4:坐標(biāo)系與參數(shù)方程
(本小題滿分10分)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

查看答案和解析>>

C選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系中,求過(guò)橢圓為參數(shù))的右焦點(diǎn)且與直線為參數(shù))平行的直線的普通方程。

查看答案和解析>>

C.(選修4—4:坐標(biāo)系與參數(shù)方程)

在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正

半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),求直線

得的弦的長(zhǎng)度.

 

查看答案和解析>>

C(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為                

 

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點(diǎn),軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

 

 

 

查看答案和解析>>

 

一:選擇題:BCAAD   CCCBA  CC

 

二:填空題:

<s id="mo6u6"></s>
    • <button id="mo6u6"><th id="mo6u6"></th></button>

      20090109

      三:解答題

      17.解:(1)由已知

         ∴ 

         ∵  

      ∴CD⊥AB,在Rt△BCD中BC2=BD2+CD2,                                                  

          又CD2=AC2-AD2, 所以BC2=BD2+AC2-AD2=49,                                               

      所以                                                                                    

      (2)在△ABC中,   

                  

              

           而   

      如果,

          

                                                                         

                                        

      18.解:(1)點(diǎn)A不在兩條高線上,

       不妨設(shè)AC邊上的高:,AB邊上的高:

      所以AC,AB的方程為:,

      ,即

      ,

      由此可得直線BC的方程為:。

      (2),

      由到角公式得:

      同理可算,

      19.解:(1)令

         則,因,

      故函數(shù)上是增函數(shù),

      時(shí),,即

         (2)令

          則

          所以在(,―1)遞減,(―1,0)遞增,

      (0,1)遞減,(1,)遞增。

      處取得極小值,且

      故存在,使原方程有4個(gè)不同實(shí)根。

      20.解(1)連結(jié)FO,F是AD的中點(diǎn),

      *  OFAD,

      EO平面ABCD

      由三垂線定理,得EFAD,

      AD//BC,

      EFBC                          

      連結(jié)FB,可求得FB=PF=,則EFPB,

      PBBC=B,

       EF平面PBC。 

      (2)連結(jié)BD,PD平面ABCD,過(guò)點(diǎn)E作EOBD于O,

      連結(jié)AO,則EO//PD

      且EO平面ABCD,所以AEO為異面直線PD、AE所成的角              

      E是PB的中點(diǎn),則O是BD的中點(diǎn),且EO=PD=1

      在Rt△EOA中,AO=

         所以:異面直線PD與AE所成的角的大小為

      (3)取PC的中點(diǎn)G,連結(jié)EG,F(xiàn)G,則EG是FG在平面PBC內(nèi)的射影

      * PD平面ABCD,

      * PDBC,又DCBC,且PDDC=D,

      BC平面PDC

      * BCPC,

      EG//BC,則EGPC,

      FGPC

      所以FGE是二面角F―PC―B的平面角                                   

      在Rt△FEG中,EG=BC=1,GF=

      ,

      所以二面角F―PC―B的大小為   

      21.解(1), 

      ,

         ,令,

      所以遞增

      ,可得實(shí)數(shù)的取值范圍為

      (2)當(dāng)時(shí),

         所以:

      即為 

      可化為

      由題意:存在,時(shí),

      恒成立

      ,

      只要

       

      所以:,

      ,知

      22.證明:(1)由已知得

        

      (2)由(1)得

      =

       


      同步練習(xí)冊(cè)答案
    • <del id="mo6u6"><kbd id="mo6u6"></kbd></del>
    • <s id="mo6u6"><tfoot id="mo6u6"></tfoot></s>