題目列表(包括答案和解析)
斜率為1的直線過拋物線的焦點,與拋物線交于兩點A、B將直線AB接向量平移得直線的動點,M為拋物線弧AB上的動點
①若,求拋物線方程
②求的最大值
③求的最小值
已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分
【解析】第一問中設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為
第二問中,設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結(jié)論直線與曲線總有兩個公共點.
然后設點,的坐標分別, ,則,
要使被軸平分,只要得到。
(1)設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為. ………………2分
(2)設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)
………………6分
設點,的坐標分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當時,(*)對任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點,使得總能被軸平分
設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設點P的坐標為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為.
由P在橢圓上,有
因為,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
已知曲線上動點到定點與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;
(3)以曲線的左頂點為圓心作圓:,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.
【解析】第一問利用(1)過點作直線的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關(guān)于X軸對稱,設,, 不妨設.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當時,取得最小值為.
計算得,,故,又點在圓上,代入圓的方程得到.
故圓T的方程為:
設橢圓(常數(shù))的左右焦點分別為,是直線上的兩個動點,.
(1)若,求的值;
(2)求的最小值.
【解析】第一問中解:設,則
由得 由,得
②
第二問易求橢圓的標準方程為:
,
所以,當且僅當或時,取最小值.
解:設, ……………………1分
則,由得 ①……2分
(1)由,得 ② ……………1分
③ ………………………1分
由①、②、③三式,消去,并求得. ………………………3分
(2)解法一:易求橢圓的標準方程為:.………………2分
, ……4分
所以,當且僅當或時,取最小值.…2分
解法二:, ………………4分
所以,當且僅當或時,取最小值
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com