題目列表(包括答案和解析)
已知函數(shù),當時,有極大值
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調區(qū)間;
(3)求此函數(shù)在[-2,2]上的最大值和最小值。
探究函數(shù)的最小值,并確定取得最小值時x的值。列表如下:
x | … | 0.5[來源:學|科|網(wǎng)] | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點,完成以下的問題。
(1)函數(shù)在區(qū)間(0,2)上遞減,在區(qū)間 上遞增。當 時, 。
(2)證明:函數(shù)在區(qū)間(0,2)遞減。
(3)思考:函數(shù)時有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)
探究函數(shù),x∈(0,+∞)的最小值,并確定相應的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若函數(shù),(x>0)在區(qū)間(0,2)上遞減,則在 上遞增;
(2)當x= 時,,(x>0)的最小值為 ;
(3)試用定義證明,(x>0)在區(qū)間(0,2)上遞減;
(4)函數(shù),(x<0)有最值嗎?是最大值還是最小值?此時x為何值?
(5)解不等式.
解題說明:(1)(2)兩題的結果直接填寫在橫線上;(4)題直接回答,不需證明。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com