題目列表(包括答案和解析)
某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺(jué)記憶能力與視覺(jué)記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺(jué)記憶能力為中等,且視覺(jué)記憶能力偏高的學(xué)生為3人.
視覺(jué) [來(lái)源:] |
視覺(jué)記憶能力 |
||||
偏低 |
中等 |
偏高 |
超常 |
||
聽覺(jué) 記憶 能力 |
偏低 |
0 |
7 |
5 |
1 |
中等 |
1 |
8 |
3 |
||
偏高 |
2 |
0 |
1 |
||
超常 |
0 |
2 |
1 |
1 |
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺(jué)記憶能力恰為中等,且聽覺(jué)記憶能力為中等或中等以上的概率為.
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望.
【解析】1)中由表格數(shù)據(jù)可知,視覺(jué)記憶能力恰為中等,且聽覺(jué)記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺(jué)記憶能力恰為中等,且聽覺(jué)記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分
所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分
(2)中由表格數(shù)據(jù)可知,具有聽覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生共有8人.
方法1:記“至少有一位具有聽覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件B,
則“沒(méi)有一位具有聽覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件
(3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為,其中具有聽覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的結(jié)果數(shù)為,………………………7分
所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的概率為,k=0,1,2,3
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時(shí),;當(dāng)時(shí),;
而,所以猜想,的最小值為. …………8分
下證不等式對(duì)任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時(shí),,成立.
假設(shè)當(dāng)時(shí),不等式成立,
當(dāng)時(shí),, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式, …………10分
, …………12分
所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
x |
x+h |
a |
b |
ah |
b-a |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
x |
h |
y-a |
b-a |
b-a |
h |
∫ | h 0 |
b-a |
h |
b-a |
2h |
| | h 0 |
b-a |
2h |
1 |
2 |
1 |
3 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com