題目列表(包括答案和解析)
已知函數(shù),項(xiàng)數(shù)為27的等差數(shù)列滿足,且公差≠0.若=0,則當(dāng)=_____時(shí),=0.
如圖所示,M,N是函數(shù)y=2sin(wx+)(ω>0)圖像與x軸的交點(diǎn),點(diǎn)P在M,N
之間的圖像上運(yùn)動(dòng),當(dāng)△MPN面積最大時(shí)·=0,則ω= ( )
A. B.
C. D.8
(09年湖北鄂州5月模擬理)已知兩定點(diǎn)A(-3,0),B(3,0),動(dòng)圓M與直線AB相切于點(diǎn)N,且,現(xiàn)分別過點(diǎn)A、B作動(dòng)圓M的切線(異于直線AB),兩切線相交于點(diǎn)P.
⑴求動(dòng)點(diǎn)P的軌跡方程;
⑵若直線xmy3=0截動(dòng)點(diǎn)P的軌跡所得的弦長(zhǎng)為5,求m的值;
⑶設(shè)過軌跡上的點(diǎn)P的直線與兩直線分別交于點(diǎn)P1、P2,且點(diǎn)P分有向線段所成的比為λ(λ>0),當(dāng)λ∈時(shí),求的最值.(09年山東省實(shí)驗(yàn)中學(xué)綜合測(cè)試文)(13分)
直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐
標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
以下四個(gè)命題,其中正確的是________.
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每20分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在回歸直線方程=0.2x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位;
④對(duì)分類變量X與Y,它們的隨機(jī)變量K2(χ2)的觀測(cè)值k來說,k越小,“X與Y有關(guān)系”的把握程度越大.
一 、選擇題
1.C. 2.A. 3.A. 4.A. 5.A. 6.C. 7.A. 8.A. 9.C. 10.D. 11.C.12.D.
一、 填空題
13.. 14.2. 15.16. 16.13.
三、解答題
17.(理科) (1)由(1+tanA)(1+tanB)=2,得
tanA+tanB=1-tanAtanB,
即tan(A+B)=1.
∵A、B為△ABC內(nèi)角, ∴A+B=. 則 C=(定值).
(2)已知△ABC內(nèi)接于單位圓, ∴△ABC外接圓半徑R=1.
∴由正弦定理得:,,.
則△ABC面積S===
==
==.
∵ 0<B<, ∴.
故 當(dāng)時(shí),△ABC面積S的最大值為.
(文科)。1),
,,,∴ .
∴ 向量和的夾角的大小為.
(2).
以和為鄰邊的平行四邊形的面積,
據(jù)此猜想,的幾何意義是以、為鄰邊的平行四邊形的面積.
18. (1)學(xué)生甲恰好抽到3道歷史題,2道地理題的概率為
.
(2)若學(xué)生甲被評(píng)為良好,則他應(yīng)答對(duì)5道題或4道題
而答對(duì)4道題包括兩種情況:①答對(duì)3道歷史題和1道地理(錯(cuò)一道地理題);②答對(duì)2道歷史題和2道地理題(錯(cuò)一道歷史題)。
設(shè)答對(duì)5道記作事件A;
答對(duì)3道歷史題,1道地理題記作事件B;
答對(duì)2道歷史題,2道地理題,記作事件C;
,
,
.
∴甲被評(píng)為良好的概率為:
.
19. (1)延長(zhǎng)AC到G,使CG=AC,連結(jié)BG、DG,E是AB中點(diǎn),.
故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.
(2)設(shè)C到平面ABD的距離為h
20. (1).
(2) 由(1)知:,故在是增函數(shù).
又對(duì)于一切恒成立.
由定理知:存在
由(1)知:
由的一般性知:.
21. (1)以中點(diǎn)為原點(diǎn),所在直線為軸,建立平面直角坐標(biāo)系,則.
設(shè),由得,此即點(diǎn)的軌跡方程.
(2)將向右平移一個(gè)單位,再向下平移一個(gè)單位后,得到圓,
依題意有.
(3)不妨設(shè)點(diǎn)在的上方,并設(shè),則,
所以,由于且,
故.
22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x.
∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴-f(x)+g(x)=a-x .
∴f(x)=,g(x)=.
⑵是R上的減函數(shù),
∴y=f -1(x)也是R上的減函數(shù).
又
⑶
n>2,當(dāng)上是增函數(shù).是減函數(shù);
上是減函數(shù).是增函數(shù).
(文科)。1)∵函數(shù)在和時(shí)取得極值,∴-1,3是方程的兩根,
∴
(2),當(dāng)x變化時(shí),有下表
x
(-∞,-1)
-1
(-1,3)
3
(3,+∞)
f’(x)
+
0
-
0
+
f(x)
ㄊ
Max
c+5
ㄋ
Min
c-27
ㄊ
而時(shí)f(x)的最大值為c+54.
要使f(x)<2|c|恒成立,只要c+54<2|c|即可.
當(dāng)c≥0時(shí)c+54<
當(dāng)c<0時(shí)c+54<-
∴c∈(-∞,-18)∪(54,+∞).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com