在區(qū)間上的最大值是A.-2 B.0 C.2 D.4 查看更多

 

題目列表(包括答案和解析)

(08年福州質(zhì)檢理)在區(qū)間[-1,3]上的最大值是                   (    )

       A.-2                     B.0                        C.2                        D.

查看答案和解析>>

(07年北師大附中) 函數(shù)f (x ) = x4-2x2 + 5在區(qū)間[-2,3]上的最大值與最小值分別是(    )

A.5、4         B.13、4          C.68、4           D.68、5

查看答案和解析>>

函數(shù)y=x2-2x+3在閉區(qū)間[0,m]上有最大值為3,最小值為2,則m的取值范圍是(    )

A.(-∞,2)

B.[0,2]

C.[1,2]

D.[1,+∞)

查看答案和解析>>

函數(shù)y=x2-2x+3在閉區(qū)間[0,m]上有最大值為3,最小值為2,則m的取值范圍是(    )

A.(-∞,2)

B.[0,2]

C.[1,2]

D.[1,+∞)

查看答案和解析>>

(本小題14分)

線的斜率是-5。

(Ⅰ)求實數(shù)b、c的值;

(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;

(Ⅲ)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

選項

A

B

B

D

B

D

C

A

B

C

A

D

二、填空題

13、(-¥,-1)È(2,+¥)  14 、2n ? 1   15、45  16、 17、0.94  18、

三、解答題

19、解: 設(shè)等比數(shù)列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q

所以 + 2q= , 解得q1= , q2= 3,

當(dāng)q1=, a1=18.所以 an=18×()n-1= = 2×33-n

當(dāng)q=3時, a1= , 所以an=×3n-1=2×3n-3

20、解:(1)將函數(shù)解析式變形為

   (2)方程f(x)=5的解分別是                和 ,      由于f(x)在(-∞,-1]和[2,5]上單調(diào)遞減,在[-1,2]和[5,+∞)上單調(diào)遞增,因此

.   

由于

21、:(1)當(dāng)a=2時,A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

當(dāng)a<時,A=(3a+1,2)要使BA,必須,此時a=-1;

當(dāng)a=時,A=,使BA的a不存在;

當(dāng)a>時,A=(2,3a+1)要使BA,必須,此時1≤a≤3.

綜上可知,使BA的實數(shù)a的取值范圍為[1,3]∪{-1}

22、解:(Ⅰ)求導(dǎo)得。

            由于 的圖像與直線相切于點

            所以,即:

                  1-3a+3b = -11        解得:

                  3-6a+3b=-12

(Ⅱ)得:

     令f′x)>0,解得 x-1x3;又令f′x)< 0,解得 -1x3.

故當(dāng)x, -1)時,f(x)是增函數(shù),當(dāng) x3,)時,f(x)也是增函數(shù),

但當(dāng)x-1 ,3)時,f(x)是減函數(shù).

 


同步練習(xí)冊答案