題目列表(包括答案和解析)
(08年福州質檢理)在區(qū)間[-1,3]上的最大值是 ( )
A.-2 B.0 C.2 D.
(07年北師大附中) 函數f (x ) = x4-2x2 + 5在區(qū)間[-2,3]上的最大值與最小值分別是( )
A.5、4 B.13、4 C.68、4 D.68、5
函數y=x2-2x+3在閉區(qū)間[0,m]上有最大值為3,最小值為2,則m的取值范圍是( )
A.(-∞,2)
B.[0,2]
C.[1,2]
D.[1,+∞)
A.(-∞,2)
B.[0,2]
C.[1,2]
D.[1,+∞)
(本小題14分)
線的斜率是-5。
(Ⅰ)求實數b、c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對任意給定的正實數a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
選項
A
C
C
B
D
B
A
D
A
C
D
D
二、填空題
13、45 14、 15、 16、0.94 17、 18、
三、解答題
19、解:f(x)=?(-1)
f(x)=(2x+1)=2?0+1=1
∴
20、解:(1)當a=2時,A=(2,7),B=(4,5)∴ AB=(4,5)
(2)∵ B=(
當a<時,A=(
當a=時,A=,使BA的a不存在;
當a>時,A=(2,
綜上可知,使BA的實數a的取值范圍為[1,3]∪{-1}
21、解:(1)ξ可能的取值為0,1,2,3.
P(ξ=0)=?== P(ξ=1)=?+?=
P(ξ=2)=?+?= P(ξ=3)=?=.
ξ的分布列為
ξ
0
1
2
3
P
數學期望為Eξ=1.2.
(2)所求的概率為
p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=
22、解:,(2分)
因為函數在處的切線斜率為-3,
所以,即, 1
又得。 2
(1)函數在時有極值,所以, 3
解123得,
所以.
(2)因為函數在區(qū)間上單調遞增,所以導函數在區(qū)間上的值恒大于或等于零,
則得,所以實數的取值范圍為.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com