6.圓上到直線的距離等于的點共有 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系xOy中,點Q到兩點M(0,-
3
)
,N(0,
3
)
的距離之和等于4,記點Q的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)以MN為直徑的圓與曲線C有幾個公共點?要說明理由;
(Ⅲ)P是曲線C上一點,則使△PMN是直角三角形的點P有幾個?(直接作答,不寫過程)

查看答案和解析>>

圓(x-1)2+(y+1)2=4上到直線x+y-
2
=0
的距離等于1的點共有(  )

查看答案和解析>>

在平面直角坐標系xOy中,點Q到兩點M(0,-
3
)
,N(0,
3
)
的距離之和等于4,記點Q的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)以MN為直徑的圓與曲線C有幾個公共點?要說明理由;
(Ⅲ)P是曲線C上一點,則使△PMN是直角三角形的點P有幾個?(直接作答,不寫過程)

查看答案和解析>>

已知橢圓的中心和拋物線的頂點都在坐標原點,有公共焦點,點軸正半軸上,且的長軸長、短軸長及點右準線的距離成等比數列。

(Ⅰ)當的準線與右準線間的距離為時,求的方程;

(Ⅱ)設過點且斜率為的直線,兩點,交,兩點。當時,求的值。

查看答案和解析>>

已知橢圓的中心和拋物線的頂點都在坐標原點有公共焦點,點軸正半軸上,且的長軸長、短軸長及點右準線的距離成等比數列.

(Ⅰ)當的準線與右準線間的距離為時,求的方程;

(Ⅱ)設過點且斜率為的直線兩點,交,兩點. 當時,求的值.

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

www.ks5u.com   作根軸圖:

 

 

 

                                                     ………………………4′

   可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

              ………………………4′

的方程為: ………………………5′

為所求………………………6′

16.解:∵  ∴,………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

當且僅當:………………………6′

       時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

   

由題意得:

解得:(舍去)………………………5′

由弦長公式得:………………………7′

18.解①設雙曲線的實半軸,虛半軸分別為

由題得:   ∴………………………1′

于是可設雙曲線方程為:………………………2′

將點代入可得:,

∴該雙曲線的方程為:………………………4′

②直線方程可化為:

則它所過定點代入雙曲線方程:得:

………………………6′

又由,

,…………7′

……………………8′

19.解:①設中心關于的對稱點為

解得:

,又點在左準線上,

的方程為:……………………4′

②設、、

、成等差數列,

,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

,,

∴橢圓的方程為:

 

 

 


同步練習冊答案