題目列表(包括答案和解析)
(本題滿分8分)
如圖,在正方體中,是的中點(diǎn),
求證:
(1)∥平面;
(2)求異面直線與所成角的余弦值.
(本題滿分8分)已知四棱錐P-ABCD的直觀圖與三視圖如圖所示
(1)求四棱錐P-ABCD的體積;
(2)若E為側(cè)棱PC的中點(diǎn),求證:PA//平面BDE.
(本題滿分8分)
求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點(diǎn)M,且與直線2x + y + 5 = 0平行的直線方程。
(本題滿分8分)已知,函數(shù).
(Ⅰ)求的極值(用含的式子表示);
(Ⅱ)若的圖象與軸有3個(gè)不同交點(diǎn),求的取值范圍.
(本題滿分8分)已知函數(shù)。
(1)求的振幅和最小正周期;
(2)求當(dāng)時(shí),函數(shù)的值域;
(3)當(dāng)時(shí),求的單調(diào)遞減區(qū)間。
一、選擇題(4′×10=40分)
題號
1
2
3
4
5
6
7
8
9
10
答案
D
D
B
C
D
C
A
A
B
A
三、填空題(4′×4=16分)
11. 12. 13. 14.
三、解答題(共44分)
15.①解:原不等式可化為: ………………………2′
作根軸圖:
………………………4′
可得原不等式的解集為: ………………………6′
②解:直線的斜率 ………………………2′
∵直線與該直線垂直
∴ ………………………4′
則的方程為: ………………………5′
即為所求………………………6′
16.解:∵ ∴,且………………………1′
于是………………………3′
………………………4′
………………………5′
當(dāng)且僅當(dāng): 即………………………6′
時(shí),………………………7′
17.解:將代入中變形整理得:
………………………2′
首先且………………………3′
設(shè)
由題意得:
解得:或(舍去)………………………5′
由弦長公式得:………………………7′
18.解①設(shè)雙曲線的實(shí)半軸,虛半軸分別為,
由題得: ∴………………………1′
于是可設(shè)雙曲線方程為:………………………2′
將點(diǎn)代入可得:,
∴該雙曲線的方程為:………………………4′
②直線方程可化為:,
則它所過定點(diǎn)代入雙曲線方程:得:
∴………………………6′
又由得,
∴,或,…………7′
∴
∴……………………8′
19.解:①設(shè)中心關(guān)于的對稱點(diǎn)為,
則 解得:
∴,又點(diǎn)在左準(zhǔn)線上,軸
∴的方程為:……………………4′
②設(shè)、、、
∵、、成等差數(shù)列,
∴,
即:
亦:
∴ ……………………6′
∴
由得……………………8′
∴, ∴
又由代入上式得:
∴, ∴……………………9′
∴,,
∴橢圓的方程為:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com