設(shè) (1)求點(diǎn)N的軌跡C的方程 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)

   (1)求點(diǎn)P的軌跡C的方程;

   (2)設(shè)是(1)中軌跡C上不同的兩點(diǎn),在A,B處的曲線(xiàn)C的切線(xiàn)相交于點(diǎn)N,點(diǎn)M是線(xiàn)段AB的中點(diǎn),求證:MN⊥x軸。

查看答案和解析>>


(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M、N是直線(xiàn)l上的兩個(gè)點(diǎn),點(diǎn)E是點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),若·=0,
求 | MN | 的最小值。

查看答案和解析>>

設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y)(x、y∈R),向量
a
=(x-2,y),
b
=(x+2,y),且|a|+|b|=8,
(I)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)N(0,2)作直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn),若
OP
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),是否存在直線(xiàn)l,使得四邊形OAPB為矩形,若存在,求出直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)P的軌跡是曲線(xiàn)C,滿(mǎn)足:點(diǎn)P到F(-2,0)的距離與它到直線(xiàn)l:x=-4的距離之比是常數(shù),又點(diǎn)M(2,-
2
)
在曲線(xiàn)C上,點(diǎn)N(-1,1)在曲線(xiàn)C的內(nèi)部.
(1)求曲線(xiàn)C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y)(x、y∈R),向量=(x-2,y),=(x+2,y),且|a|+|b|=8,
(I)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)N(0,2)作直線(xiàn)l與曲線(xiàn)C交于A、B兩點(diǎn),若(O為坐標(biāo)原點(diǎn)),是否存在直線(xiàn)l,使得四邊形OAPB為矩形,若存在,求出直線(xiàn)l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項(xiàng)中,只有一項(xiàng)符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

100080

18.(12分)

   (1)馬琳勝出有兩種情況,3:1或3:2

        ………………………… 6分

   (2)

       

分布列:    3      4     5

      P              ……………………10分

E= ………………………………………………12分

文科:前3次中獎(jiǎng)的概率

……………………6分

(2)在本次活動(dòng)中未中獎(jiǎng)的概率為

  (1-p)10…………………………………………………………8分

恰在第10次中獎(jiǎng)的概率為

(1-p)9p………………………………………………………………10分

………………………………12分

19.(12分)

<ruby id="hpukx"><video id="hpukx"><big id="hpukx"></big></video></ruby>

EM是平行四邊形 …… 3分

平面PAB ……5分

(2)過(guò)Q做QF//PA  交AD于F

 QF⊥平面ABCD

作FH⊥AC  H為垂足

∠QHF是Q―AC―D的平面角……8分

設(shè)AF=x  則

FD=2-x

在Rt△QFH中,

……10分

∴Q為PD中點(diǎn)……12分

解法2

(1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

 M(0,1,……………………………………3分

是平面PAB的法向量  

    故MC//平面PAB…………5分

(2)設(shè)

設(shè)是平面QAC的法向量

………………………………9分

為平面ACD的法向量,于是

∴Q為PD的中點(diǎn)…………………………………………12分

20.經(jīng)分析可知第n行有3n-2個(gè)數(shù),                  理科        文科

前n-1行有                    

第n行的第1個(gè)數(shù)是                   2分        4分

(1)第10行第10個(gè)數(shù)是127                      4分         7分

(2)表中第37行、38行的第1個(gè)數(shù)分別為1927,2036

所以2008是此表中的第37行

第2008-1927+1=82個(gè)數(shù)                         8分         14分

(3)不存在

第n行第1個(gè)數(shù)是

 第n+2行最后一個(gè)數(shù)是 

                     =

這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

          =9n+3  個(gè)數(shù)                                   10分

這3行沒(méi)有數(shù)之和

                          12分

此方程無(wú)正整數(shù)解.

21.(理科14分,文科12分)                                            理科 文科

(1)P(0,b)  M(a,0) 沒(méi)N(x,y) 由

     由                  ②

將②代入①得曲線(xiàn)C的軌跡方程為 y2 = 4x                              5分 6分

(2)點(diǎn)F′(-1,0)  ,設(shè)直線(xiàn)ly = k (x+1) 代入y2 = 4x

k2x2+2 (k2-2)x+k2=0

                                             7分 8分

設(shè)A(x1,y1) B(x2y2) D(x0,y0) 則

故直線(xiàn)DE方程為

令y=0 得   

的取值范圍是(3,+∞)                                   10分 12分

(3)設(shè)點(diǎn)Q的坐標(biāo)為(-1,t),過(guò)點(diǎn)Q的切線(xiàn)為:yt = k (x+1)

代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

△=16-16k (t+k)    令

兩切線(xiàn)l1,l2 的斜率k1k2是此方程的兩根

k1?k2=-1    故l1l2                                          14分

22.文科:依題意                         2分

                                                 4分

          若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

          ∵的圖象是開(kāi)口向下的拋物線(xiàn)                            6分

解之得 t≥5                                                 12分

理科:

(1)

                                        2分

x        0      (0,)         (,1)    1

               ―         0        +

    -                  -4                -3

所以    是減函數(shù)

        是增函數(shù)                                   4分

時(shí)的值域?yàn)閇-4,-3]                              6分

(2)

∵a≥1 當(dāng)時(shí)

時(shí)  g (x)↓

  時(shí)  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

任給x1∈[0,1]  f (x1) ∈[-4,-3]

存在x0∈[0,1]  使得  g (x0) = f (x1)

則:[1-2a3a2,-2a]=[-4,-3]                                 10分

即 

又a≥1  故a的取值范圍為[1,]                                

 


同步練習(xí)冊(cè)答案
<table id="hpukx"><acronym id="hpukx"></acronym></table>