因?yàn)楹瘮?shù)在上的最大值為.所以故----5分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).        ①

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.

【解析】(1)

所以,的最小正周期

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118369506745619_ST.files/image002.png">在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),

,,,

故函數(shù)在區(qū)間上的最大值為,最小值為-1.

 

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當(dāng)時(shí),求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域?yàn)椋?,2),.

當(dāng)a=1時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域?yàn)椋?,2),.

(1)當(dāng)時(shí),所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當(dāng)時(shí), >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

已知冪函數(shù)滿足

(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對(duì)稱軸方程為:,結(jié)合二次函數(shù)的對(duì)稱軸,和開口求解最大值為5.,得到

(1)對(duì)于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),,

當(dāng)k=1時(shí),,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對(duì)稱軸方程為:,

當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>


同步練習(xí)冊(cè)答案