所以 當時.取最大值 1 查看更多

 

題目列表(包括答案和解析)

的最大值為M。

   (1)當時,求M的值。

   (2)當取遍所有實數(shù)時,求M的最小值;

       (以下結論可供參考:對于,當同號時取等號)

   (3)對于第(2)小題中的,設數(shù)列滿足,求證:。

查看答案和解析>>

的最大值為M。
(1)當時,求M的值。
(2)當取遍所有實數(shù)時,求M的最小值;
(以下結論可供參考:對于,當同號時取等號)
(3)對于第(2)小題中的,設數(shù)列滿足,求證:。

查看答案和解析>>

設f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當a=c=0,b=
34
時,求M的值;
(Ⅱ)當a,b,c取遍所有實數(shù)時,求M的最小值.
(以下結論可供參考:對于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當且僅當a,b,c,d同號時取等號)

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學公式(t為常數(shù)).
(1)當t=1時,在圖中的直角坐標系內作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數(shù)列{an}的單調性并由此寫出該數(shù)列中最大項和最小項(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數(shù)列{xn},求實數(shù)t的值.

查看答案和解析>>

設f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當a=c=0,b=
3
4
時,求M的值;
(Ⅱ)當a,b,c取遍所有實數(shù)時,求M的最小值.
(以下結論可供參考:對于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當且僅當a,b,c,d同號時取等號)

查看答案和解析>>


同步練習冊答案