(1)證明:函數(shù)的圖象交于不同的兩點A.B, 查看更多

 

題目列表(包括答案和解析)

設函數(shù)的圖象為,曲線關于直線y=x對稱.

(1)求曲線

(2)設方程x的取值范圍為M,求證:

(3)AB為曲線上任意不同兩點,證明直線AB與直線一定相交

 

查看答案和解析>>

設函數(shù)的圖象為,曲線關于直線y=x對稱.

(1)求曲線

(2)設方程x的取值范圍為M,求證:

(3)A、B為曲線上任意不同兩點,證明直線AB與直線一定相交

 

查看答案和解析>>

已知函數(shù)f(x)=ax2+ax和g(x)=x-a,其中a∈R,且a≠0.
(I)若函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試求△OAB的面積S的最大值;
(II)若p和q是方程f(x)-g(x)=0的兩正根,且數(shù)學公式,證明:當x∈(0,P)時,f(x)<P-a.

查看答案和解析>>

已知函數(shù)f(x)=ax2+ax和g(x)=x﹣a,其中a∈R,且a≠0.
(I)若函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試求△OAB的面積S的最大值;
(II)若p和q是方程f(x)﹣g(x)=0的兩正根,且 ,證明:當x∈(0,P)時,f(x)<P﹣a.

查看答案和解析>>

已知函數(shù)f(x)=ax2+ax和g(x)=x-a,其中a∈R,且a≠0.
(I)若函數(shù)f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試求△OAB的面積S的最大值;
(II)若p和q是方程f(x)-g(x)=0的兩正根,且,證明:當x∈(0,P)時,f(x)<P-a.

查看答案和解析>>

一、選擇題:(本題每小題5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空題:(本題每小題4分,共16分)

11.      12.     13.    14.

三、解答題(本大題6小題,共84分。解答應寫出文字說明,證明過程或演算步驟)

15.(本小題滿分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小題滿分14分)

解:(1),

    又    ………6分

(2)因 

 ………8分

,則

…………………10分

…14分

 

 

17.(本小題滿分14分)

解:                            (…………………3分)

=(…………………7分)

,,

(1)若,即時,==,(…………10分)

(2)若,即時,

所以當時,=(…………………13分)

(…………………14分)

18.(本小題滿分14分)

解:(1)令,,即

 由

  ∵,∴,即數(shù)列是以為首項、為公差的等差數(shù)列, ∴  …………8分

(2)化簡得,即

 ∵,又∵時,…………12分

 ∴各項中最大項的值為…………14分

19.(本小題滿分14分)

解:(1),由題意―――①

       又―――②

       聯(lián)立得                       …………5分

(2)依題意得   即 ,對恒成立,設,則

      解

      當   ……10分

      則

      又,所以;故只須   …………12分

      解得

      即的取值范圍是       …………14分

20.(本小題滿分14分)

解:(1)由,

    即函數(shù)的圖象交于不同的兩點A,B;                                               ……4分(2)

已知函數(shù),的對稱軸為

在[2,3]上為增函數(shù),                          ……………6分

                      ……8分

(3)設方程

                                 ……10分

                                ……12分

的對稱軸為上是減函數(shù),      ……14分

 


同步練習冊答案