設(shè)向量.其中.(1)求的取值范圍, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)設(shè)函數(shù),其中.(1)若,求的單調(diào)遞增區(qū)間;(2)如果函數(shù)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)的取值范圍;(3)求證對(duì)任意的,不等式恒成立

查看答案和解析>>

(08年安徽卷理)(本小題滿分13分)

設(shè)數(shù)列滿足,其中為實(shí)數(shù)。

(Ⅰ)證明:對(duì)任意成立的充分必要條件是,

(Ⅱ)設(shè),證明:;

(Ⅲ)設(shè),證明:

查看答案和解析>>

(本小題滿分13分)

設(shè)函數(shù),其中,且a≠0.

(Ⅰ)當(dāng)a=2時(shí),求函數(shù)在區(qū)間[1,e]上的最小值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間。

 

查看答案和解析>>

(本小題滿分13分)設(shè)函數(shù),其中表示不超過的最大整數(shù),如. (Ⅰ)求的值; (Ⅱ)若在區(qū)間上存在x,使得成立,求實(shí)數(shù)k的取值范圍;(Ⅲ)求函數(shù)的值域.

查看答案和解析>>

(本小題滿分13分)  設(shè)數(shù)列是公比大于1的等比數(shù)列,為其前項(xiàng)和,已知=7且,,成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和
(3)求的表達(dá)式.

查看答案和解析>>

1、B  2、B  3、D  4、D  5、A   6、D   7、B  8、C  9、A  10、B

11、12、13、14、15、16、-,0

17. 解:(1)∵

,

,∴,∴,

!.6分

(2)∵

,

,

,∴,∴,∴…….12分

18、的所有可能取值有6,2,1,-2;,

,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

 

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時(shí)1件產(chǎn)品的平均利潤(rùn)為

依題意,,即,解得 所以三等品率最多為

19、(Ⅰ)證明:因?yàn)?sub>所以′(x)=x2+2x,

   

 

 

x

(-∞,-2)

-2

(-2,0)

0

(0,+∞)

f′(x)

+

0

-

0

+

f(x)

極大值

極小值

 

 

 

 

 

 

 

由點(diǎn)在函數(shù)y=f′(x)的圖象上,

    又所以

    所以,又因?yàn)?sub>′(n)=n2+2n,所以,

    故點(diǎn)也在函數(shù)y=f′(x)的圖象上.

(Ⅱ)解:,

.

當(dāng)x變化時(shí),?的變化情況如下表:

注意到,從而

①當(dāng),此時(shí)無極小值;

②當(dāng)的極小值為,此時(shí)無極大值;

③當(dāng)既無極大值又無極小值.

 

20、(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.

因?yàn)?nbsp;     E為BC的中點(diǎn),所以AE⊥BC.

     又   BC∥AD,因此AE⊥AD.

因?yàn)镻A⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

而    PA平面PAD,AD平面PAD 且PA∩AD=A,

所以  AE⊥平面PAD,又PD平面PAD.

所以 AE⊥PD.

 

(Ⅱ)解:設(shè)AB=2,H為PD上任意一點(diǎn),連接AH,EH.

由(Ⅰ)知   AE⊥平面PAD,

則∠EHA為EH與平面PAD所成的角.

在Rt△EAH中,AE=,

所以  當(dāng)AH最短時(shí),∠EHA最大,

即     當(dāng)AH⊥PD時(shí),∠EHA最大.

此時(shí)    tan∠EHA=

因此   AH=.又AD=2,所以∠ADH=45°,

所以    PA=2.

解法一:因?yàn)?nbsp;  PA⊥平面ABCD,PA平面PAC,

        所以   平面PAC⊥平面ABCD.

        過E作EO⊥AC于O,則EO⊥平面PAC,

        過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,

       在Rt△AOE中,EO=AE?sin30°=,AO=AE?cos30°=,

       又F是PC的中點(diǎn),在Rt△ASO中,SO=AO?sin45°=,

       又    

       在Rt△ESO中,cos∠ESO=

       即所求二面角的余弦值為

21、(Ⅰ)解:依題設(shè)得橢圓的方程為,

直線的方程分別為,.??????????????????????????????????? 2分

如圖,設(shè),其中,

滿足方程,

.①

,得;

上知,得

所以

化簡(jiǎn)得,

解得.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)解法一:根據(jù)點(diǎn)到直線的距離公式和①式知,點(diǎn)的距離分別為,

.??????????????????????????????????????????????????? 9分

,所以四邊形的面積為

,

當(dāng),即當(dāng)時(shí),上式取等號(hào).所以的最大值為.?????????????????????? 12分

解法二:由題設(shè),,

設(shè),由①得,

故四邊形的面積為

????????????????????????????????????????????????????????????????????????????????????????????? 9分

,

當(dāng)時(shí),上式取等號(hào).所以的最大值為.     12分

22、解法一:(Ⅰ),,

是以為首項(xiàng),為公比的等比數(shù)列.

,

(Ⅱ)由(Ⅰ)知,

,原不等式成立.

(Ⅲ)由(Ⅱ)知,對(duì)任意的,有

,

原不等式成立.

解法二:(Ⅰ)同解法一.

(Ⅱ)設(shè),

,

當(dāng)時(shí),;當(dāng)時(shí),

當(dāng)時(shí),取得最大值

原不等式成立.

(Ⅲ)同解法一.

 

 

 

 


同步練習(xí)冊(cè)答案