題目列表(包括答案和解析)
設(shè)橢圓 :()的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線 與橢圓 交于 , 兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當(dāng)直線斜率存在時,設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com