將1.2.3.4填入4×4方格中.要求每行.每列都沒有重復數字.右圖是一種填法.不同的填法共有A.24種 B.144種C.216種 D.432種 查看更多

 

題目列表(包括答案和解析)

將1、2、3、4四個數字隨機填入下方2×2的方格中,每個方格中恰填一數字,但數字可重復使用﹒試問事件「A方格的數字大于B方格的數字、且C方格的數字大于D方格的數字」的機率為多少?

[     ]

(1)、
(2)、
(3)、
(4)、
(5)、

查看答案和解析>>

將1﹑2﹑3﹑4四個數字隨機填入右方2×2的方格中﹐每個方格中恰填一數字﹐但數字可重復使用﹒試問事件「A方格的數字大于B方格的數字﹑且C方格的數字大于D方格的數字」的機率為(  )
A、
1
16
B、
9
64
C、
25
64
D、
9
256

查看答案和解析>>

將n個正數1,2,3,…,填入n×n方格中,使得每行、每列、每條對角線上的數字的和相等,這個方形就叫做n階幻方,記f(n)為n階幻方對角線上數字之和,如:下圖就是一個3階幻方,可知f(3)=15,那么f(4)等于(    )

A.32           B.33               C.34                D.35

查看答案和解析>>

將n2個正整數1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=( 。
8 1 6
3 5 7
4 9 2
A.32B.33C.34D.35

查看答案和解析>>

將n2個正整數1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=( )
A.32
B.33
C.34
D.35

查看答案和解析>>

1.A 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.B 10.D 11.B 12.D

13.-3 14.7 15.②④ 16.3

17.解:(1)f(x)=Acos2(ωx+φ)+1=cos(2ωx+2φ)++1.

又A>0,ω>0,0<φ<,∴f(x)的最大值為A+1,最小值為1.

由f(x)的最大值與最小值的差為2,∴A=2.

由f(x)過點(0,2),f(0)=cos 2φ+2=2,∴φ=,

則T=4π=,∴ω=,f(x)=cos(x+)+2=2-sinx.6分

(2)∵B=,∴b=f(B)=2-sin(?)=.

設A,C所對的邊分別為a,c,由余弦定理得=a2+c2-2accos,+ac=a2+c2≥2ac,ac≤,

當且僅當a=c=時等號成立,△ABC的面積S=acsin≤.12分

18.解:(1)某應聘者能被聘用的概率為p0=1-(1-)(1-)(1-p)=+p.4分

(2)在4位應聘者中恰好有2人被聘用的概率為CP?(1-P0)2,

恰有3位被聘用的概率為Cp?(1-p0)1,依題意Cp?(1-p0)2≥Cp?(1-p0)1,解得p0≤,

即+p≤⇒0≤p≤.12分

19.解:(1)連AQ,∠PQA是PQ與平面ABCD所成角,AQ=2,BQ=2,即Q是BC的中點,過Q作QH⊥AD于H,則QH⊥平面PAD,過Q作QM⊥PD,連MH,則∠QMH為所求二面角的平面角.

在Rt△PAD中,=⇒MH===,

所以tan∠QMH===,

從而所求二面角的大小為arctan .6分

(2)由于Q是BC的中點,可得DQ⊥PQ,

⇒面PAQ⊥面PDQ,

過A作AG⊥PQ于G,則AG為點A到平面PQD的距離.

AG===.12分

另解:分別以AD,AB,AP為x,y,z軸建立空間直角坐標系,

由條件知Q是BC的中點,面PAD的一個法向量是=(0,2,0).

又D(4,0,0),Q(2,2,0),P(0,0,4),

故=(0,2,0),=(-4,0,4),

 

設面PDQ的法向量為n=(x,y,z),

則⇒由此可取n=(1,1,1),

從而(1)cos〈,n〉===.

(2)面PDQ的一個法向量為n=(1,1,1),=(2,2,0),

故點A到平面PDQ的距離d===.

20.解:(1)an1=an1+(-1)n1+n,于是a3=a1+2-1=2,a2n1=a2n3-1+2n-2(n≥2),

∴a2n1=a2n3+2n-3(n≥2).

…………

a3=a1+1

a2n1=a1+=n2-2n+2.2分

而a2=b1+1=2

a4=b3+3=a2+4

…………

a2n=a2n2+2n

∴a2n=a2n2+2n

∴a2n=a2+=n2+n.8分

(2)Sn=++…+

=++…+=1-

∴S2009=1-=.12分

21.解:(1)設P(x,y),則=(-2-x,-y),=(2-x,-y),依題意有(-2-x)(2-x)+y2=?,化簡得x2-y2=2.4分

(2)假設存在定點F(m,0),使?為常數.

當直線l與x軸不垂直時,設l:y=k(x-2),

⇒(1-k2)x2+4k2x-4k2-2=0,

依題意k2≠1,設M(x1,y1),N(x2,y2),則

于是?=(x1-m,y1)(x2-m,y2)=(k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2

=+m2-4m+2.8分

要使?是與k無關的常數,當且僅當m=1,此時?=-1.

當直線l⊥x軸時,可得M(2,),N(2,-),若m=1,則?=(1,)(1,-)=-1.

所以在x軸上存在定點F(1,0),使?為常數.12分

22.解:f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).

(1)當a=-時,f′(x)=4x3+3ax2+4x=2x(2x-1)(x-2),令f′(x)≥0,得0≤x≤或x≥2,所以f(x)的增區(qū)間為[0,]與[2,+∞).4分

(2)f′(x)=x(4x2+3ax+4),顯然x=0不是方程4x2+3ax+4=0的根,為使f(x)僅在x=0處有極值,4x2+3ax+4≥0必須恒成立,即有Δ=9a3-64≤0,解得a∈[-,].8分

(3)由條件a∈[-2,2]知Δ=9a2-64<0,從而4x2+3ax+4>0恒成立.

當x<0時f′(x)<0;當x>0時,f′(x)>0.

因此f(x)在區(qū)間[-1,1]上的最大值為max{f(-1),f(1)}.

為使對任意a∈[-2,2],f(x)≤1在x∈[-1,1]上恒成立,當且僅當⇒在a∈[-2,2]上恒成立,解得b≤-4,故b的取值范圍是(-∞,-4].

 

 


同步練習冊答案