題目列表(包括答案和解析)
已知函數=.
(Ⅰ)當時,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,=,
當≤2時,由≥3得,解得≤1;
當2<<3時,≥3,無解;
當≥3時,由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當∈[1,2]時,==2,
∴,有條件得且,即,
故滿足條件的的取值范圍為[-3,0]
設, .
(1)當時,求曲線在處的切線方程;
(2)如果存在,使得成立,求滿足上述條件的最大整數;
(3)如果對任意的,都有成立,求實數的取值范圍.
【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,轉化解決;(3)任意的,都有成立即恒成立,等價于恒成立
設函數
(1)當時,求曲線處的切線方程;
(2)當時,求的極大值和極小值;
(3)若函數在區(qū)間上是增函數,求實數的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區(qū)間遞增,說明了在區(qū)間導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調遞增。∴滿足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數的取值范圍是
已知函數在取得極值
(1)求的單調區(qū)間(用表示);
(2)設,,若存在,使得成立,求的取值范圍.
【解析】第一問利用
根據題意在取得極值,
對參數a分情況討論,可知
當即時遞增區(qū)間: 遞減區(qū)間: ,
當即時遞增區(qū)間: 遞減區(qū)間: ,
第二問中, 由(1)知: 在,
,
在
從而求解。
解:
…..3分
在取得極值, ……………………..4分
(1) 當即時 遞增區(qū)間: 遞減區(qū)間: ,
當即時遞增區(qū)間: 遞減區(qū)間: , ………….6分
(2) 由(1)知: 在,
,
在
……………….10分
, 使成立
得:
當函數取得最大值時,___________.
【解析】函數為,當時,,由三角函數圖象可知,當,即時取得最大值,所以.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com