當時.即解得 查看更多

 

題目列表(包括答案和解析)

已知函數=.

(Ⅰ)當時,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

【解析】(Ⅰ)當時,=

≤2時,由≥3得,解得≤1;

當2<<3時,≥3,無解;

≥3時,由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

∈[1,2]時,==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>

,  

(1)當時,求曲線處的切線方程;

(2)如果存在,使得成立,求滿足上述條件的最大整數;

(3)如果對任意的,都有成立,求實數的取值范圍.

【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,轉化解決;(3)任意的,都有成立即恒成立,等價于恒成立

 

查看答案和解析>>

設函數

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數在區(qū)間上是增函數,求實數的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區(qū)間遞增,說明了在區(qū)間導數恒大于等于零,分離參數求解范圍的思想。

解:(1)當……2分

   

為所求切線方程!4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調遞增。∴滿足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數的取值范圍是

 

查看答案和解析>>

已知函數取得極值

(1)求的單調區(qū)間(用表示);

(2)設,若存在,使得成立,求的取值范圍.

【解析】第一問利用

根據題意取得極值,

對參數a分情況討論,可知

時遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: ,

第二問中, 由(1)知:

,

 

從而求解。

解:

…..3分

取得極值, ……………………..4分

(1) 當時  遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: , ………….6分

 (2)  由(1)知: ,

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

當函數取得最大值時,___________.

【解析】函數為,當時,,由三角函數圖象可知,當,即時取得最大值,所以.

 

查看答案和解析>>


同步練習冊答案