探索型問題 查看更多

 

題目列表(包括答案和解析)

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學模型
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為y=2(x+
a
x
)(x>0)

探索研究
(1)我們可以借鑒學習函數(shù)的經(jīng)驗,先探索函數(shù)y=x+
1
x
(x>0)
的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1時,函數(shù)y=x+
1
x
(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

探索研究:
通過對一次函數(shù)、反比例函數(shù)的學習.我們積累了一定的經(jīng)驗.下面我們借鑒以往研究函效的經(jīng)驗,探索的數(shù)y=x+
1
x
(x>0)的圖象和性質(zhì).
(1)填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1 2 3 4
y
(2)觀察圖象,寫出函數(shù)兩條不同類型的性質(zhì):
函數(shù)兩條不同類型的性質(zhì)是:當0<x<1時,y 隨x的增大而減小,當x>1時,y 隨x的增大而增大;
函數(shù)兩條不同類型的性質(zhì)是:當0<x<1時,y 隨x的增大而減小,當x>1時,y 隨x的增大而增大;
;
當x=1時,函數(shù)y=x+
1
x
(x>0)的最小值是2.
當x=1時,函數(shù)y=x+
1
x
(x>0)的最小值是2.

知識運用:
一般函數(shù)y=x+
a
x
(x>0,a>0)也有類似的結論.請利用上面探究函數(shù)性質(zhì)的方法解決下列問題:
己知一個矩形的面積是4.設矩形的一邊長為x.它的周長為y.求y與x的函數(shù)關系式,井求出:當x取何值時.矩形的周長最?最小值是多少?

查看答案和解析>>

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學模型
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為
探索研究
(1)我們可以借鑒學習函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)(x>0)的最小值.==
=≥2
=0,即x=1時,函數(shù)(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學模型
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為
探索研究
(1)我們可以借鑒學習函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)(x>0)的最小值.==
=≥2
=0,即x=1時,函數(shù)(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

探索研究:
通過對一次函數(shù)、反比例函數(shù)的學習.我們積累了一定的經(jīng)驗.下面我們借鑒以往研究函效的經(jīng)驗,探索的數(shù)y=x+數(shù)學公式(x>0)的圖象和性質(zhì).
(1)填寫下表,畫出函數(shù)的圖象:
x數(shù)學公式數(shù)學公式數(shù)學公式1234
y
(2)觀察圖象,寫出函數(shù)兩條不同類型的性質(zhì):
①________;
②________.
知識運用:
一般函數(shù)y=x+數(shù)學公式(x>0,a>0)也有類似的結論.請利用上面探究函數(shù)性質(zhì)的方法解決下列問題:
己知一個矩形的面積是4.設矩形的一邊長為x.它的周長為y.求y與x的函數(shù)關系式,井求出:當x取何值時.矩形的周長最小?最小值是多少?

查看答案和解析>>

 

. 填空題(每空4分,共48分)

  1. 請你寫出:(1)一個比-1大的負數(shù):____________;(2)一個二次三項式:____________。

  2. 請你寫出:(1)經(jīng)過點(0,2)的一條直線的解析式是________________________;(2)經(jīng)過點(0,2)的一條拋物線的解析式是________________________。

  3. 如果菱形的面積不變,它的兩條對角線的長分別是x和y,那么y是x的____________函數(shù)。(填寫函數(shù)名稱)

  4. 如圖,△ADE和△ABC有公共頂點A,∠1=∠2,請你添加一個條件:___________,使△ADE∽△ABC。

  5. 有一列數(shù):1,2,3,4,5,6,……,當按順序從第2個數(shù)數(shù)到第6個數(shù)時,共數(shù)了_______個數(shù);當按順序從第m個數(shù)數(shù)到第n個數(shù)()時,共數(shù)了_______個數(shù)。

  6. 請你在“2,-3,4,-5,6”中任意挑選4個數(shù),添加“+,-,×,÷”和括號進行運算,使其計算結果為24,這個算式是_____________________。

  7. 已知三個數(shù),請你再添上一個數(shù),寫出一個比例式_________________。

  8. 觀察下列各式:;……請你將猜想到的規(guī)律用自然數(shù)表示出來:____________________________。

  9. 下面是按照一定規(guī)律畫出的一列“樹型圖”:

    經(jīng)觀察可以發(fā)現(xiàn):圖(2)比圖(1)多出2個“樹枝”,圖(3)比圖(2)多出5個“樹枝”,圖(4)比圖(3)多出10個“樹枝”,照此規(guī)律,圖(7)比圖(6)多出_______個“樹枝”。

 

. 選擇題(每小題4分,共20分)

  10. 下面四個圖形每個均由六個相同的小正方形組成,折疊后能圍成正方體的是(    )

  11. 某種細胞每過30分鐘便由1個分裂成2個,經(jīng)過兩小時,這種細胞由1個能分裂成(    )

    A. 8個                                B. 16個                               C. 4個                                 D. 32個

  12. 1~54這54個自然數(shù)排列如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

……

49

50

51

52

53

54

    在這張數(shù)表中任意圈出一個豎列上相鄰的3個數(shù),和不可能是(    )

    A. 66                                  B. 39                                  C. 40                                  D. 57

  13. 一張長方形的餐桌四周可坐6人(如圖1),現(xiàn)有35人需圍成一圈,開個茶話會,如果按如圖2方式將桌子拼在一起,那么至少需要餐桌(    )

    A. 14張                               B. 15張                                      C. 16張                               D. 32張

  14. 觀察下列兩組算式:

    (1),

    (2),……

    根據(jù)你發(fā)現(xiàn)的規(guī)律寫出的末位數(shù)字是(    )

    A. 2                                    B. 4                                    C. 8                                    D. 6

. 解答題(第1521題,每題10分,第2212分,共82分)

  15. 如圖,AB=AE,∠ABC=∠AED,BC=ED,點F是CD的中點。

    (1)求證:AF⊥CD。

    (2)在你連結BE后,還能得出什么新的結論?請寫出三個(不要求證明)

  16. 如圖,有一塊半圓形的木板,現(xiàn)要把它截成三角形板塊。三角形的兩個頂點分別為A、B,另一頂點在上,問怎樣截取才能使截出的三角形的面積最大?(要求畫出示意圖并說明理由)

  17. 已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,A是的中點,過A點的切線與CB的延長線交于點E。

    (1)求證:AB?DA=CD?BE;

    (2)若點E在CB的延長線上運動,點A在上運動,使切線EA變?yōu)楦罹EFA,問具備什么條件時,原結論成立?(要求畫出示意圖,注明條件,不要求證明)

  18. 某單位搞綠化,要在一塊圓形空地上種四種顏色的花。為了便于管理且美觀,相同顏色的花集中種植,且每種顏色的花所占的面積相同。現(xiàn)征集設計方案,要求設計的圖案成軸對稱圖形或中心對稱圖形。請在下面圓中畫出兩種設計方案。(只畫示意圖,不寫作法)

  19. 如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD。

    (1)P是上一點(不與C、D重合),求證:∠CPD=∠COB;

    (2)當點P’在劣弧上(不與C,D重合)時,∠CP’D與∠COB有什么數(shù)量關系?請證明你的結論。

  20. 已知鈍角△ABC(如圖)。你能否將△ABC分割成三個三角形,使其中之一是等腰三角形,另外的兩個三角形相似?若能,請畫出分割圖并證明;若不能,請說明理由。

  21. 如圖,△ABC內(nèi)部有若干個點,用這些點以及△ABC的頂點A,B,C把原三角形分割成一些三角形(互相不重疊)。

    (1)填寫下表:

△ABC內(nèi)點的個數(shù)

1

2

3

4

……

n

分割成的三角形的個數(shù)

3

5

 

 

……

 

    (2)原△ABC能否被分割成2004個三角形?若能,求此時△ABC內(nèi)部有多少個點?若不能,請說明理由。

 

 

 22. 如圖,直徑為13的⊙O’經(jīng)過原點O,并且與x軸,y軸分別交于A,B兩點,線段OA,OB(OA>OB)的長分別是方程的兩根。

    (1)求線段OA,OB的長;

    (2)已知點C在劣弧上,連結BC交OA于D,當時,求C點的坐標;

    (3)在(2)的條件下,問:⊙O’上是否存在點P,使?若存在,求出點P的坐標;若不存在,請說明理由。

 

試題答案

. 填空題。  1.   2.   3. 反比例  4. ∠D=∠B  5. 5,

  6.   7.   8.   9. 80

. 選擇題。  10. C                   11. B          12. C          13. C          14. D

. 解答題。  15. 證:(1)連結AC、AD

   

   

    (2)AF⊥BE,AF平分BE,BE∥CD

  16. 解:作OC⊥AB交于點C,連結AC、BC

    此時的面積最大

    證明:上任取一點C’(與C不重合),過C’作CH⊥AB于H

    連AC’、BC’,設BH=x,則(圓半徑為R)

   

    當時,的最大值為,C’H最大為R

    ∴必有

   

  17. 證:(1)連結AC

    AE切⊙O于A

    A是的中點

   

    ABCD內(nèi)接于⊙O

   

   

    (2)具備條件:(或BF=DA,或∠BAF=∠DCA,或FA∥BD等)

    就能使原結論成立

  18.

   

    AB⊥CD于O點

   

    AB⊥CD于O,分別以半徑為直徑畫半圓。

  19. 證:(1)

    (2)互補

    證:CP’DP是⊙O的內(nèi)接四邊形

   

    已證:∠CPD=∠COB

   

  20. 解:能,作∠CAE=∠B,∠BAD=∠C

    則△ABD∽△CAE

    ∴∠1=∠2

    ∴△ADE為等腰三角形

  21. (1)

△ABC內(nèi)點的個數(shù)

1

2

3

4

……

n

分割成的三角形的個數(shù)

3

5

7

9

……

2n+1

    (2)若△ABC能被分割成2004個三角形

    則

    不是整數(shù)

    ∴故原三角形不能被分割成2004個三角形

  22. 解:(1)連結AB

    ∵∠AOB為Rt∠

    ∴AB為直徑

    又OA、OB是方程的兩根

   

    又

    解<2>、<3>式得:

    (OA>OB)

    (2)連結O’C交OA于E

   

   

    ∴O’C⊥OA

   

    ∴C點坐標(6,-4)

    (3)P不存在

    若假設存在

    則由C(6,-4),B(0,5)

    得BC直線的解析式為

   

   

    又∵⊙O’上到x軸距離的最大值為9

    ∴點P不在⊙O’上

    ∴不存在點P

    使

 


同步練習冊答案