已知服從正態(tài)分布N(5.4).那么P()= . 查看更多

 

題目列表(包括答案和解析)

已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%,95.4%,和99.7%.某校為高一年級(jí)1000名新生每人定制一套校服,經(jīng)統(tǒng)計(jì),學(xué)生的身高(單位:cm)服從正態(tài)分布(165,52),則適合身高在155~175cm范圍內(nèi)的校服大約要定制( 。

查看答案和解析>>

下列四個(gè)命題中,正確的是( 。

查看答案和解析>>

下列四個(gè)命題中,正確的是( 。

查看答案和解析>>

(2012•臨沂二模)給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②設(shè)x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確結(jié)論的序號(hào)是
②③
②③
.(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

下列四個(gè)命題中,正確的是( 。
A、對(duì)于命題p:?x∈R,使得x2+x+1<0,則-p:?x∈R,均有x2+x+1>0
B、函數(shù)f(x)=e-x-ex切線斜率的最大值是2
C、已知ξ服從正態(tài)分布N(0,ρ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2;
D、已知函數(shù)f(a)=∫0asinxdx,則f[f(
π
2
)]1-cos1;

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A為銳角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

當(dāng)B=600時(shí),Y取得最大值。……………………(13’)

 17. 設(shè)答對(duì)題的個(gè)數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

,      

      0

      2

      4

      8

      P

       

      的分布列為

      …………………………………10分

        

       

       

       

      (2)E=…………………………12分

      答:該人得分的期望為2分……………………………………………………13分

      18. 解:(1)取AC中點(diǎn)D,連結(jié)SD、DB.

      ∵SA=SC,AB=BC,

      ∴AC⊥SD且AC⊥BD,

      ∴AC⊥平面SDB,又SB平面SDB,

      ∴AC⊥SB-----------4分

      (2)∵AC⊥平面SDB,AC平面ABC,

      ∴平面SDB⊥平面ABC.

      過N作NE⊥BD于E,NE⊥平面ABC,

      過E作EF⊥CM于F,連結(jié)NF,

      則NF⊥CM.

      ∴∠NFE為二面角N-CM-B的平面角---------------6分

      ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

      又∵NE⊥平面ABC,∴NE∥SD.

      ∵SN=NB,

      ∴NE=SD===, 且ED=EB.

      在正△ABC中,由平幾知識(shí)可求得EF=MB=,

      在Rt△NEF中,tan∠NFE==2,

      ∴二面角N―CM―B的大小是arctan2-----------------------8分

      (3)在Rt△NEF中,NF==,

      ∴S△CMN=CM?NF=

      S△CMB=BM?CM=2-------------11分

      設(shè)點(diǎn)B到平面CMN的距離為h,

      ∵VB-CMN=VN-CMB,NE⊥平面CMB,

      S△CMN?h=S△CMB?NE,∴h==.

      即點(diǎn)B到平面CMN的距離為--------13分

      19. (1)解:當(dāng)0<t≤10時(shí),
        是增函數(shù),且                3分
        當(dāng)20<t≤40時(shí),是減函數(shù),且                    6分
        所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘                7分

      (2)解:,所以,講課開始25分鐘時(shí),學(xué)生的注意力比講課開始后5分鐘更集中 9分

      (3)當(dāng)0<t≤10時(shí),令得:                   10分
        當(dāng)20<t≤40時(shí),令得:                      12分
        則學(xué)生注意力在180以上所持續(xù)的時(shí)間
        所以,經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題         14分

       

      20.解:

      (1)設(shè)

      當(dāng)時(shí)最大值為。故

      ………………………(6’)

      (2)由橢圓離心率得雙曲線

      設(shè)……………(7’)

      ①     當(dāng)AB⊥x軸時(shí),

      .…………(9’)

      ②當(dāng)時(shí).

      ………………………………………………(12’)

      同在內(nèi)……………(13’)

      =

      =有成立。…………………………(14’).

      21. (1)
        當(dāng)a≥0時(shí),在[2,+∞)上恒大于零,即,符合要求;      2分
          當(dāng)a<0時(shí),令,g (x)在[2,+∞)上只能恒小于零
        故△=1+4a≤0或,解得:a≤
        ∴a的取值范圍是                                     6分

      (2)a = 0時(shí),
        當(dāng)0<x<1時(shí),當(dāng)x>1時(shí),∴              8分

      (3)反證法:假設(shè)x1 = b>1,由
          ∴
        故
         ,即  ①
        又由(2)當(dāng)b>1時(shí),,∴
        與①矛盾,故b≤1,即x1≤1
        同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分

       

       


      同步練習(xí)冊(cè)答案