(2)是否存在.使得對任意正整數(shù)都有?若存在.求出的值,若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

是否存在一個二次函數(shù),使得對任意的正整數(shù),當時,都

成立?請給出結(jié)論,并加以證明.

查看答案和解析>>

是否存在一個二次函數(shù),使得對任意的正整數(shù),當時,都

成立?請給出結(jié)論,并加以證明.

查看答案和解析>>

數(shù)列中,, 對任意的為正整數(shù)都有

(1)求證:是等差數(shù)列;

(2)求出的通項公式;

(3)若),是否存在實數(shù)使得對任意的恒成立?若存在,找出;若不存在,請說明理由。

查看答案和解析>>

(1)是否存在正整數(shù)的無窮數(shù)列{an},使得對任意的正整數(shù)n都有

(2)是否存在正無理數(shù)的無窮數(shù)列{an},使得對任意的正整數(shù)n都有

查看答案和解析>>

(1)是否存在正整數(shù)的無窮數(shù)列,使得對任意的正整數(shù)n都有。

(2)是否存在正無理數(shù)的無窮數(shù)列,使得對任意的正整數(shù)n都有。

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

D

D

A

B

C

C

D

二、填空題:(每小題5分,共30分)

11. ; 12. ;  13. ; 14. 2或;  15. ;  16.  9.

三、解答題:(5大題,共70分)

17.(1)由,得------------3分

為銳角,, -------5分

                                   --------------------------6分

(2) ---8分

,,得,       --------------------------10分

          --------------------------12分

(若通過得出,求出,

未舍去,得兩解,扣2分.)

18.(1)設(shè)點,由,

,得,         ------------------------4分

.                              ---------------------6分

(2)由(1)知為拋物線的焦點,為過焦點的直線與的兩個交點.

①當直線斜率不存在時,得,,.      ----8分

②當直線斜率存在且不為0時,設(shè),代入

.設(shè)

,得,    ----12分

(或

,此時,由

。                                 ---------------14分

19.解法一:

(1)在中,,,

,取中點,

,

中,,,又均為銳角,∴,                             ---------------2分

,又外, .      ---------------4分

(2)∵平面平面,∴,過,連結(jié),則,

為二面角的平面角,               ------------------------6分

易知=,∴

二面角的大小為.          ------------------------9分

(其它等價答案給同樣的得分)

(3),點到平面的距離,就是到平面的距離,-------------------------------11分

,則,的長度即為所求, 由上 (或用等體積求)----------------------------------14分

解法二:

如圖,建立圖示空間直角坐標系.

,,.

(1)

(2)利用,其中分別為兩個半平面的法向量,

或利用求解.

    (3)利用,其中為平面的法向量。

20.(1),∴    ①

,∴,即    ②

由①②得,.又時,①、②不成立,故.------2分

,設(shè)x1、x2是函數(shù)的兩個極值點,則x1、x2是方程=0的兩個根,,

x1+x2=,又∵ A、O、B三點共線, =

=0,又∵x1x2,∴b= x1+x2=,∴b=0. ----------------6分

(2)時,,                          -----------------------7分

,可知上單調(diào)遞增,在

上單調(diào)遞減, .  ---------------------9分

①由的值為1或2.(∵為正整數(shù))   -----------------11分

時,記上切線斜率為2的切點的橫坐標為

則由,依題意得,

矛盾.

(或構(gòu)造函數(shù)上恒正)

綜上,所求的值為1或2.                           -----------------------14分

21.(1)∵為正數(shù),  ①,=1,∴>0(n∈N*),……… 1分

  又 ②,①―②兩式相減得,

  ∴同號,                            ---------------------4分

  ∴對n∈N*恒成立的充要條件是>0.         ---------------------7分

  由=>0,得>7 .                        ---------------------8分

 

 

(2)證法1:假設(shè)存在,使得對任意正整數(shù)都有 .

,則>17 .                                   --------------------9分

另一方面,==,---------11分

,,……,,

,∴=, ①

--------------------------------14分

當m>16時,由①知,,不可能使對任意正整數(shù)n恒成立,

--------------------------------15分

∴m≤16,這與>17矛盾,故不存在m,使得對任意正整數(shù)n都有 .

--------------------------------16分

(2)證法2:假設(shè)存在m,使得對任意正整數(shù)n都有 .

,則>17 .                                 --------------------9分

另一方面,,       ------------------11分

,……,,

           ①            -----------------14分

當m>16時,由①知,,不可能使對任意正整數(shù)恒成立,

--------------------------15分

∴m≤16,這與>17矛盾,故不存在m,使得對任意正整數(shù)n都有 。                               -----------------------------16分

 


同步練習(xí)冊答案