∴在單調(diào)遞增. 查看更多

 

題目列表(包括答案和解析)

在單調(diào)遞增數(shù)列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列,n=1,2,3,….
(1)分別計(jì)算a3,a5和a4,a6的值;
(2)求數(shù)列{an}的通項(xiàng)公式(將an用n表示);
(3)設(shè)數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,證明:Sn
4n
n+2
,n∈N*

查看答案和解析>>

在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立.
(Ⅰ)求a2的取值范圍;
(Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè)數(shù)學(xué)公式,數(shù)學(xué)公式,求證:對(duì)任意的n∈N*,數(shù)學(xué)公式

查看答案和解析>>

在單調(diào)遞增數(shù)列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列,n=l,2,3,….
(Ⅰ)分別計(jì)算a3,a5和a4,a6的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式(將an用n表示);
(Ⅲ)設(shè)數(shù)列的前n項(xiàng)和為Sn,證明:,n∈N*。

查看答案和解析>>

在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立,
(Ⅰ)求a2的取值范圍;
(Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè),求證:對(duì)任意的n∈N*,。

查看答案和解析>>

在單調(diào)遞增數(shù)列{an}中,a1=2,不等式(n+1)an≥na2n對(duì)任意n∈N*都成立.
(Ⅰ)求a2的取值范圍;
(Ⅱ)判斷數(shù)列{an}能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè),,求證:對(duì)任意的n∈N*,

查看答案和解析>>


同步練習(xí)冊(cè)答案