C. 查看更多

 

題目列表(包括答案和解析)


C.選修4—4:坐標系與參數(shù)方程
(本小題滿分10分)
在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關系.

查看答案和解析>>

C選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
在平面直角坐標系中,求過橢圓為參數(shù))的右焦點且與直線為參數(shù))平行的直線的普通方程。

查看答案和解析>>

C.(選修4—4:坐標系與參數(shù)方程)

在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正

半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),求直線

得的弦的長度.

 

查看答案和解析>>

C(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標方程為.點P在曲線C上,則點P到直線l的距離的最小值為                

 

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程

在直角坐標系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點,軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線的極坐標方程.

 

 

 

查看答案和解析>>

 

一、選擇題:

       BDDCB  BBAAC  AC

二、填空題:

13.   14.6   15.    16.

17.解:(I)取AC的中點G,連接OG,EG,

      

       平面OEG

           5分

<strike id="rdqcc"></strike>
  • 20090514

           平面ABC

          

           又

           又F為AB中點,

          

           ,

           平面SOF,

           平面SAB,

           平面SAB      10分

    18.解:

          

          

          

                6分

       (I)由

        得對稱軸方程     8分

       (II)由已知條件得,

          

          

                12分

    19.解:設點,點共有16個:(0,0),(0,-1),(-1,0),(0,1),(1,0),

       (0,2),(2,0),(-1,-1),(-1,1),(1,-1),(-1,2),(2,-1),(1,1),(1,2),

       (2,1),(2,2)       3分

       (I)傾斜角為銳角,

           ,

           則點P有(-1,1),(1,-1),(-1,2),(2,-1),

               6分

       (II)直線不平行于x軸且不經(jīng)過第一象限

       

           即     10分

           *點P有(-1,-1),(-1,0),

           概率      12分

    20.解:(I),直線AF2的方程為

           設

           則有,

          

               6分

       (II)假設存在點Q,使

          

                 8分

          

           *Q在以MN為直徑的圓(除去M,N點)上,

           圓心O(0,0),半徑為

           又點Q在圓

           *圓O與圓相離,假設不成立

           *上不存在符合題意的點Q。      12分

    21.解:(I)

           是等差數(shù)列

           又

               2分

          

          

                5分

           又

           為首項,以為公比的等比數(shù)列      6分

       (II)

          

           當

           又               

           是單調遞增數(shù)列      9分

       (III)時,

          

           即

                  12分

    22.解L

           的值域為[0,1]        2分

           設的值域為A,

           ,

           總存在

          

          

       (1)當時,

           上單調遞減,

          

          

               5分

       (2)當時,

          

           令

           (舍去)

           ①當時,列表如下:

          

    0

    3

     

    -

    0

    +

     

    0

          

           則

                9分

           ②當時,時,

           函數(shù)上單調遞減

          

          

                  11分

           綜上,實數(shù)的取值范圍是      12分


    同步練習冊答案