因為0<<2. 查看更多

 

題目列表(包括答案和解析)

 [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足。

(Ⅰ)求角C的大;

(Ⅱ)求的最大值。

 (Ⅰ)解:由題意可知

absinC=,2abcosC.

所以tanC=.

因為0<C<,

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

當△ABC為正三角形時取等號,

所以sinA+sinB的最大值是.

 

 


 [番茄花園1]1.

查看答案和解析>>

已知0.2x<25,求實數(shù)x的取值范圍.(2)因為0<0.2<1,所以指數(shù)函數(shù)f(x)=0.2x在R上是減函數(shù).

查看答案和解析>>

設函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因為0<a<2,所以.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當,即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當,即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當時,;

時,

 

查看答案和解析>>

當0<x<時,函數(shù)f(x)=的最小值是 (   )

A.4           B.       C.2           D.

 

查看答案和解析>>

(04年廣東卷)(12分)

設函數(shù)

(I)證明:當時,

(II)點(0<x0<1)在曲線上,求曲線上在點處的切線與軸,軸正向所圍成的三角形面積的表達式。(用表示)

查看答案和解析>>


同步練習冊答案