151.解答多參型問題時.關鍵在于恰當地引出參變量, 想方設法擺脫參變量的困繞.這當中.參變量的分離.集中.消去.代換以及反客為主等策略.是解答這類問題的通性通法) 查看更多

 

題目列表(包括答案和解析)

雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數就比頭的總數多1.因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只).顯然,雞的只數就是35-12=23(只)了.

  這一思路新穎而奇特,其“砍足法”也令古今中外數學家贊嘆不已.這種思維方法叫化歸法.

  化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題.

1.古代《孫子算經》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數學家贊嘆不已.對此,談談你的看法.

2.我國古代數學研究一直處于領先地位,現在有所落后了,對此,我們不應只感嘆古人的偉大,而更應該樹立為科學而奮斗終身的信心,同學們,你們準備好了嗎?

查看答案和解析>>

已知函數f(x)=
4x
x2+a
.請完成以下任務:
(Ⅰ)探究a=1時,函數f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數f(x),在[0,+∞)上的單調區(qū)間;指出在各個區(qū)間上的單調性,并對其中一個區(qū)間的單調性用定義加以證明.
(2)請回答:當x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數f(x)的奇偶性;
(2)結合已知和以上研究,畫出函數f(x)的大致圖象,指出函數的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

已知函數f(x)=
4x
x2+a

在探究a=1時,函數f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數f(x)在[0,+∞)(a=1)上的單調區(qū)間;指出在各個區(qū)間上的單調性,并對其中一個區(qū)間的單調性用定義加以證明.
(2)寫出函數f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

在一種智力有獎競猜游戲中,每個參加者可以回答兩個問題(題1和題2),且對兩個問題可以按自己選擇的順序進行作答,但是只有答對了第一個問題之后才能回答第二個問題.假設:答對題i(i=1,2),就得到獎金ai元,且答對題i的概率為
Pi(i=1,2),并且兩次作答不會相互影響.
(I)當a1=200元,P1=0.6,a2=100元,P2=0.8時,某人選擇先回答題1,設獲得獎金為ξ,求ξ的分布列和Eξ;
(II)若a1=2a2,P1+P2=1,試問:選擇先回答哪個問題時可能得到的獎金更多?

查看答案和解析>>

(本題滿分14分)在一種智力有獎競猜游戲中,每個參加者可以回答兩個問題(題1和題2),且對兩個問題可以按自己選擇的順序進行作答,但是只有答對了第一個問題之后才能回答第二個問題。假設:答對題),就得到獎金元,且答對題的概率為),并且兩次作答不會相互影響.

(I)當元,元,時,某人選擇先回答題1,設獲得獎金為,求的分布列和;

 

 

 

(II)若,,試問:選擇先回答哪個問題時可能得到的獎金更多?

 

查看答案和解析>>


同步練習冊答案