平行向量定義: ①方向相同或相反的非零向量叫平行向量, ②我們規(guī)定0與任一向量平行. 說明:(1)綜合①.②才是平行向量的完整定義, (2)向量a.b.c平行.記作a∥b∥c. 查看更多

 

題目列表(包括答案和解析)

有下列敘述
①集合
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對任意正整數(shù)恒成立,則實數(shù)的取值范圍是
④對于任意兩個正整數(shù),定義某種運算如下:
,奇偶性相同時, =;當,奇偶性不同時,=,在此定義下,集合.
上述說法正確的是____________

查看答案和解析>>

有下列敘述
①集合
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對任意正整數(shù)恒成立,則實數(shù)的取值范圍是
④對于任意兩個正整數(shù),,定義某種運算如下:
,奇偶性相同時, =;當,奇偶性不同時,=,在此定義下,集合.
上述說法正確的是____________

查看答案和解析>>

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對任意正整數(shù)n恒成立,則實數(shù)a的取值范圍是[-2,
3
2
)

④對于任意兩個正整數(shù)m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數(shù)是15個.
上述說法正確的是
③,④
③,④

查看答案和解析>>

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對任意正整數(shù)n恒成立,則實數(shù)a的取值范圍是[-2,
3
2
)

④對于任意兩個正整數(shù)m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數(shù)是15個.
上述說法正確的是______.

查看答案和解析>>

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對任意正整數(shù)n恒成立,則實數(shù)a的取值范圍是
④對于任意兩個正整數(shù)m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數(shù)是15個.
上述說法正確的是   

查看答案和解析>>


同步練習冊答案