22.已知橢圓C: ,為其左右焦點(diǎn),.為右頂點(diǎn),為左準(zhǔn)線(xiàn),過(guò)的直線(xiàn),與橢圓相交于P.Q兩點(diǎn). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左右焦點(diǎn)分別為F1、F2,A、B分別為橢圓的上、下頂點(diǎn),如果四邊形AF1BF2為邊長(zhǎng)為2的正方形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)為M,N,過(guò)點(diǎn)M作x軸的垂線(xiàn)l,在l上任取一點(diǎn)P,連接PN交橢圓C于Q,探究
OP
OQ
是否為定值?如果是,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)1(-c,0)、F2(c,0)分別為其左、右焦點(diǎn),A、B分別為其上頂點(diǎn)、右頂點(diǎn),且滿(mǎn)足∠F1AB=90°.
(1)求橢圓C的離心率e;
(2)若P為橢圓C上的任意一點(diǎn),是否存在過(guò)點(diǎn)F2、P的直線(xiàn)l,使l與y軸的交點(diǎn)R滿(mǎn)足
RP
=-2
PF2
?若存在,求出直線(xiàn)l的斜率k;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),且a,b,c成等比數(shù)列.
(1)求橢圓的離心率e的值.
(2)若橢圓C的上頂點(diǎn)、右頂點(diǎn)分別為A、B,求證:∠F1AB=90°.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其左、右焦點(diǎn)為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
15
2
,
PF1
PF2
=
3
4
,其中O為坐標(biāo)原點(diǎn).Q為橢圓的左頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)S(-
6
5
,0),且斜率為k的動(dòng)直線(xiàn)l交橢圓于A、B兩點(diǎn),是否存在直線(xiàn)l,使得VQAB為等腰三角形?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F(xiàn)1、F2分別為橢圓c的左右焦點(diǎn),點(diǎn)P在橢圓C上(不是頂點(diǎn)),△PF1F2內(nèi)一點(diǎn)G滿(mǎn)足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求橢圓C的離心率;
(Ⅱ)若橢圓C短軸長(zhǎng)為2
3
,過(guò)焦點(diǎn)F2的直線(xiàn)l與橢圓C相交于A、B兩點(diǎn)(A、B不是左右頂點(diǎn)),若
AF2
=2
F2B
,求△F1AB面積.

查看答案和解析>>

說(shuō)明:

       一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解答與本解答不同,可根據(jù)試題的主要內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.

       二、對(duì)計(jì)算題,當(dāng)考生的解答 某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過(guò)該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

       三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

       四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題主要考查基礎(chǔ)知識(shí)和基本運(yùn)算.

1、A             2、A             3、C              4、C              5、A             6、C

7、B              8、C              9、A             10、D            11、B            12、B

二、填空題:本大題共4個(gè)小題;每小題4分,共16分.本題主要考查基礎(chǔ)知識(shí)和基本運(yùn)算.

13、2                   14、0                   15、2                       16、② ④

三、解答題:本大題共6小題,共74分,解答題應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟,在答題卡上相應(yīng)題目的答題區(qū)域內(nèi)作答.

17.本小題主要考查三角函數(shù)的符號(hào),誘導(dǎo)公式,兩角和差公式,二倍角公式,三角函數(shù)的圖象及單調(diào)性等基本知識(shí)以及推理和運(yùn)算能力.滿(mǎn)分12分

解:(1)∵且sin2=∴2sincos= ,sin≥0得cos>0

從而sin+cos>0  ………………………………………………………… 3分

 ∴ =sin+cos===  …………6分

(2)∵=-sinx+cosx=sin(x+)  ………………………… 8分

時(shí),的單調(diào)遞增區(qū)間為[,],………………………………10分

單調(diào)遞減區(qū)間為[,2].………………………………………… 12分

18.本小題主要考查等差、比數(shù)列的概念,應(yīng)用通項(xiàng)公式及求和公式進(jìn)行計(jì)算的能力.

滿(mǎn)分12分

解:(1)   ∴

        所以, 數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,………4分

        (2)由(1)得

            

解法二:(1)同解法一

       (2) 由(1)得

         ∴……………8分,

         ∴

         ∴, ……………10分

=

=,……………………………11分

            又. ………………………12分

19.本小題主要考查直線(xiàn)和平面的位置關(guān)系,二面角的大小,點(diǎn)到平面的距離。考查空間想象能力、邏輯推理能力和運(yùn)算能力.滿(mǎn)分12分

解法一:(1)在直角梯形ABCD中,過(guò)點(diǎn)A做AN垂直BC,

垂足為N,易得BN=1,同時(shí)四邊形ANCD是矩形,

則CN=1,點(diǎn)N為BC的中點(diǎn),所以點(diǎn)N與點(diǎn)M重合,

…………………………………………………………2分

連結(jié)AM,

因?yàn)?sub>平面ABCD,所以,又AD∥BC,

所以SM AD!4分

(2)過(guò)點(diǎn)A做AG垂直SM,G為垂足,

易證平面SAM,

,在RT中, 。………7分

又AD∥平面SBC,所以點(diǎn)D到平面SBC的距離為點(diǎn)A到平面SBC的距離AG,

點(diǎn)D到平面SBC的距離為………8分

(3)取AB中點(diǎn)E,因?yàn)?sub>是等邊三角形,所以,又,得,過(guò)點(diǎn)E作EF垂直SB, F為垂足,連結(jié)CF,則,所以是二面角A-SB-C的平面角.………10分

在RT中,.在RT中,,所以二面角A-SB-C的大小為.………12分

解法二:(1)同解法一.

(2)根據(jù)(1),如圖所示,分別以AM,AD,AC所在射線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系.

有A(0,0,0),M(,0,0),B(,-1,0),C(,1 ,0),D(0,1 ,0),S(0,0 ,1)

所以,,

設(shè)平面SBC的法向量,則,

,

解得,取.………6分

=,則點(diǎn)D到平面SBC的距離

.………8分

(3)設(shè)平面ASB的法向量,則,

,

解得,取.………10分

,則二面角A-SB-C的大小為.………12分

20.本小題主要考查排列組合與概率的基礎(chǔ)知識(shí),考查推理、運(yùn)算能力與分類(lèi)討論思想,以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力. 滿(mǎn)分12分

解:(1)因?yàn)閿S出1點(diǎn)的概率為,

所以甲盒中有3個(gè)球的概率………………………4分

     (2)甲、乙、丙3個(gè)盒中的球數(shù)依次成等差數(shù)列有以下三種情況:

①甲、乙、丙3個(gè)盒中的球數(shù)分別為0、1、2,

此時(shí)的概率  ……………………………6分

②甲、乙、丙3個(gè)盒中的球數(shù)分別為1、1、1,

此時(shí)的概率  ……………………………8分

③甲、乙、丙3個(gè)盒中的球數(shù)分別為2、1、0,

此時(shí)的概率 ……………………………10分

所以,甲、乙、丙3個(gè)盒中的球數(shù)依次成等差數(shù)列的概率…12分

21.本小題主要考查函數(shù)的單調(diào)性、最值等基本知識(shí);考查函數(shù)與方程、數(shù)形結(jié)合、分類(lèi)與整合等數(shù)學(xué)思想方法;考查運(yùn)用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力以及運(yùn)算能力,滿(mǎn)分12分.

解(Ⅰ)

上單調(diào)遞增,在[-2,2]上單調(diào)遞減,

,……2分

,

…………………………4分

 

……………………………………………………6分

   (Ⅱ)已知條件等價(jià)于在……………………8分

上為減函數(shù),

……………………………………10分

上為減函數(shù),

 

………………………………………………12分

22.本小題主要考查直線(xiàn)、橢圓、向量等基礎(chǔ)知識(shí),以及應(yīng)用這些知識(shí)研究曲線(xiàn)幾何特征

基本方法,考查運(yùn)算能力和綜合解題能力.滿(mǎn)分14分.

解:(1)當(dāng)時(shí)  ,,

消去得:  , ………2分

此時(shí)ㄓ>0,

設(shè)點(diǎn)坐標(biāo)為 , 點(diǎn)坐標(biāo)為 ,

則有=  ,  3

=   ,  4

,∴ ,代入3、4得

消去

解得,

 則所求橢圓C的方程.……………………6分

 (2) 當(dāng)2時(shí),橢圓C的方程,………………7分

設(shè)點(diǎn)坐標(biāo)為 , 點(diǎn)坐標(biāo)為,

直線(xiàn)的方程為:

的方程: 聯(lián)立得: M點(diǎn)的縱坐標(biāo),

同理可得: ,………………9分

=   

      …10分

    

此時(shí)ㄓ>0,由 =   ,=   ,

=   ,=   ,……………… 12分

 ……………………13分

(當(dāng)時(shí)取等號(hào)),

的最小值為6. ……………………14分

 


同步練習(xí)冊(cè)答案