如圖.在四棱錐S-ABCD中.底面ABCD是正方形.SA⊥底面ABCD.SA=AB,點(diǎn)M是SD的中點(diǎn).AN⊥SC,且交SC于點(diǎn)N.(Ⅰ)求證:SB∥平面ACM;(Ⅱ)求二面角D-AC-M的大小;(Ⅲ)求證:平面SAC⊥平面AMN. 某城市有30%的家庭訂閱了A報(bào).有60%的家庭訂閱了B報(bào).有20%的家庭同時(shí)訂閱了A報(bào)和B報(bào).從該城市中任取4個(gè)家庭.(Ⅰ)求這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)的概率;(Ⅱ)求這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)的概率;(Ⅲ)求這4個(gè)家庭中恰好有2個(gè)家庭A.B報(bào)都沒有訂閱的概率. 查看更多

 

題目列表(包括答案和解析)

選做題:(本小題共3小題,請(qǐng)從這3題中選做2小題,如果3題都做,則按所做的前兩題記分,每小題7分.)
(1)(矩陣與變換)在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A(0,0)、B(1,1)、C(0,2),矩陣M=
01
10
,N=
0-1
10
,求△ABC在矩陣MN作用下變換所得的圖形的面積;
(2)(坐標(biāo)系與參數(shù)方程)極坐標(biāo)系下,求直線ρcos(θ+
π
3
)=1
與圓ρ=
2
的公共點(diǎn)個(gè)數(shù);
(3)(不等式)已知x+2y=1,求x2+y2的最小值.

查看答案和解析>>


(本小題共l2分)
本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租車不超過兩小時(shí)免費(fèi),超過兩小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙人互相獨(dú)立來該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為、;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為、;兩人租車時(shí)間都不會(huì)超過四小時(shí).
(Ⅰ)分別求出甲、乙在三小時(shí)以上且不超過四小時(shí)還車的概率;
(Ⅱ)求甲、乙兩人所付的租車費(fèi)用之和小于6元的概率.

查看答案和解析>>

(本小題共12分)已知數(shù)列的前n項(xiàng)和,其中是首項(xiàng)為1,公差為2的等差數(shù)列,

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

 

 

查看答案和解析>>

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點(diǎn),求a的值;

   (II)若的圖象在點(diǎn)(1,)處的切線方程為,

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

(本小題共13分)某學(xué)校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下。為了了解同學(xué)對(duì)新推出的四款套餐的評(píng)價(jià),對(duì)每位同學(xué)都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:

 

 

(1)若同學(xué)甲選擇的是A款套餐,求甲的調(diào)查問卷被選中的概率;

(2)若想從調(diào)查問卷被選中且填寫不滿意的同學(xué)中再選出2人進(jìn)行面談,求這兩人中至少有一人選擇是D款套餐的概率。

 

查看答案和解析>>

一、              選擇題(本大題共8小題,每小題5分,共40分)

 

題號(hào)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

D

A

B

B

D

A

C

C

 

二、填空題(本大題共6小題,每小題5分,有兩空的小題,第一空3分,第二空2分,共30分)

(9)2    (10)y=sin(2x+ )    (11)     (12)(-∞,-1)∪(-1,1)    (13)16,

(14)72,120

三、解答題(本大題共6小題,共80分)

(15)(共13分)

解:(Ⅰ)f(x)=cos2x+2sinxcosx-sin2x

=sin2x+cos2x……………………………………………………4分

=2sin(2x+)………………………………………………………5分

T=, f(x)∈[-2,2] ……………………………………………7分

(Ⅱ)由f()=2,有f()=2sin(A+)=2, ………………………………8分

∴sin(A+)=1.

∵0<A<,∴A+=,即A=.……………………………………10分

由余弦定理a2=b2+c2-2bccosAa2=bc,∴(b-c)2=0. ………………12分

b=c,∴B=C=.

∴△ABC為等邊三角形. ……………………………………………13分

(16)(共13分)

解:(Ⅰ)∵S1=a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列,

Sn=2n-1.……………………………………………………………2分

又當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2(2-1)=2n-2. …………………………5分

an=          ………………………………………………7分

 

(Ⅱ)a3,a5,…,a2n+1是以2為首項(xiàng),以4為公比的等比數(shù)列,…………9分

a3+a5+…+a2n+1=…………………………11分

a1+a3+…+a2n+1=1+…………………………13分

(17)(共14分)

方法一:

(Ⅰ)證明:連結(jié)BDACE,連結(jié)ME.…………………………………1分

ABCD是正方形,∴EBD的中點(diǎn).∵MSD的中點(diǎn),∴ME是△DSB的中位線.

MESB.………………………………………………………………………2分

又∵ME?平面ACM,SB?平面ACM, ………………………………………3分

SB∥平面ACM.………………………………………………………………4分

(Ⅱ)解:取AD中點(diǎn)F,則MFSA.作FQACQ,連結(jié)MQ. ………5分

SA⊥底面ABCD,∴MF⊥底面ABCD.

FQMQ在平面ABCD內(nèi)的射影.

FQAC,

MQAC.

∴∠FQM為二面角D-AC-M的平面角.………………………………………7分

設(shè)SA=AB=a,在Rt△MFQ中,MF=SA=,FQ=DE=a,

∴tanFQM=

∴二面角D-AC-M的大小為arctan. ………………………………………9分

(Ⅲ)證明:由條件有DCSA,DCDA,∴DC⊥平面SAD,∴AMDC.…………10分

又∵SA=AD,MSD的中點(diǎn),∴AMSD.

AM⊥平面SDC. ………………………………………………………………11分

SCAM.

由已知SCAN,∴SC⊥平面AMN.

SC?平面SAC,∴平面SAC⊥平面AMN. …………………………………14分

方法二:

解:(Ⅱ)如圖,以A為坐標(biāo)原點(diǎn),建立空間直角坐

標(biāo)系A-xyz, ……………………………5分

SA=AB,故設(shè)AB=AD=AS=1,則

A(0,0,0),B(0,1,0),C(1,1,0),

D(1,0,0),S(0,0,1),M,0,).

SA⊥底面ABCD,

是平面ABCD的法向量,

*=(0,0,1).

 

設(shè)平面ACM的法向量為n=(x, y, z),

=(1,1,0), =(),………………………………………………7分

 

      

 

x=1,則n=(1,-1,-1).  …………………………………………………………8分

∴cos<, n>=     =      =

∴二面角D-AC-M的大小為arccos.………………………………………9分

(Ⅲ)∵=(,0,),=(-1,-1,1),…………………………………………10分

? = -+=0.

.…………………………………………………………………………12分

又∵SCANANAM=A,

SC⊥平面AMN.又SC平面SAC,

∴平面SAC⊥平面AMN.…………………………………………………………14分

(18)(共12分)

解:(Ⅰ)設(shè)“這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)”的事件為A,………1分

P(A)=  (0.3)3(0.7)=0.0756 …………………………………………4分

答:這4個(gè)家庭中恰好有3個(gè)家庭訂閱了A報(bào)的概率為0.0756.

(Ⅱ)設(shè)“這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)”的事件為B,………5分

P(B)=1-(0.6)4=1-0.1296=0.8704…………………………………………8分

答:這4個(gè)家庭中至多有3個(gè)家庭訂閱了B報(bào)的概率為0.8704.

(Ⅲ)設(shè)“這4個(gè)家庭中恰好有2個(gè)家庭A,B報(bào)都沒有訂閱”的事件為C, …9分

因?yàn)橛?0%的家庭訂閱了A報(bào),有60%的家庭訂閱了B報(bào),

有20%的家庭同時(shí)訂閱了A報(bào)和B報(bào).所以兩份報(bào)紙都沒有訂閱的家庭

有30%.

所以P(C)=  (0.3)2(0.7)2=0.2646 …………………………………12分

答:這4個(gè)家庭中恰好有2個(gè)家庭A,B報(bào)都沒有訂閱的概率為0.2646.

:第三問若寫出兩份報(bào)紙都沒有訂閱的家庭有30%,后面計(jì)算有誤,給到10分.

(19)(共14分)

解:(Ⅰ)設(shè)拋物線S的方程為y2=2px.…………………………………………1分

可得2y2+py-20p=0.……………………………………3分

由Δ>0,有p>0,或p<-160.

設(shè)B(x1,y1),C(x2,y2),則y1+y2=.

x1+x2=(5-)+(5-)=10- =10+.…………………………5分

設(shè)A(x3,y3),由△ABC的重心為F,0),則

x3=

∵點(diǎn)A在拋物線S上,∴(2=2p),∴p=8.…………………6分

∴拋物線S的方程為y2=16x.……………………………………………………7分

(Ⅱ)當(dāng)動(dòng)直線PQ的斜率存在時(shí),設(shè)PQ的方程為y=kx+b,顯然k≠0,b≠0.………

……………………………………………………………………………………8分

設(shè)P(xp, yp),Q(xQ, yQ),∵OPOQ,∴kOP?kOQ=-1.

?=-1,∴xP xQ + yP yQ=0.  …………………………………………10分

y=kx+b代入拋物線方程,得ky2-16y+16b=0,∴yPyQ=.

k≠0,b≠0,∴b=-16k,∴動(dòng)直線方程為y=kx-16k=k(x-16).

此時(shí)動(dòng)直線PQ過定點(diǎn)(16,0).………………………………………………12分

當(dāng)直線PQ 的斜率不存在時(shí),顯然PQx軸,又OPOQ,∴△POQ為等腰直角三角形.

得到P(16,16),Q(16,-16).

此時(shí)直線PQ亦過點(diǎn)(16,0). …………………………………………………13分

綜上所述,動(dòng)直線PQ過定點(diǎn)M(16,0). ………………………………………14分

(20)(共14分)

解:(Ⅰ)由已知,可得f '(x)=2ax+b,  …………………………………………1分

解之得a=.…………………………………………3分

(Ⅱ)∵

=2×1

=2×2

=2×3

累加得=n2-n(n=2,3…).………………………………………………6分

an=n=2,3…).

當(dāng)n=1時(shí),………………………………………………7分

an=n=1,2,3…).……………………………………………8分

(Ⅲ)當(dāng)k=1時(shí),由已知a1=4<5顯然成立;………………………………………9分

當(dāng)k≥2時(shí),ak=<(k2)……………………11分

a1+a2+a3+…+ak<4+[(1-)+()+…+ ()]=5-<5

………………………………………………………………………………13分

綜上,a1+a2+a3+…+ak<5(k=1,2,3…)成立. ………………………………14分

 

說明:其他正確解法按相應(yīng)步驟給分.

 


同步練習(xí)冊(cè)答案