(2)過(guò)橢圓C內(nèi)一點(diǎn)作直線l交橢圓C于M.N兩點(diǎn).求線段MN的中點(diǎn)P的軌跡方程, 查看更多

 

題目列表(包括答案和解析)

 橢圓C的中心為原點(diǎn), 右焦點(diǎn)F(,0), 以短軸的兩端點(diǎn)及F為頂點(diǎn)的三角形恰為等邊三角形. 

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓C內(nèi)的一點(diǎn)P(0,)作直線l交橢圓C于M、 N,求MN中點(diǎn)Q的軌跡方程;

(3)在(2)條件下,求△OMN的面積最大值. 

 

 

 

 

 

 

 

 

查看答案和解析>>

橢圓與雙曲線有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線M、N兩點(diǎn),且

(1)求橢圓E的方程;

(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQx軸相交于點(diǎn)C,點(diǎn)DCQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論

 

查看答案和解析>>

橢圓與雙曲線有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

橢圓與雙曲線有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說(shuō)明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫(xiě)出這個(gè)命題的逆命題,判斷此逆命題的真假,說(shuō)明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過(guò)N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè)
MA
=λ1
AN
,
MB
=λ2
BN
,問(wèn)λ12是否為定值?說(shuō)明理由.

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得,

……………………12分

17.解:(1)因?yàn)?sub>……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為!6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點(diǎn),∴AO

垂直BD!1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過(guò)O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角!7分)

       在RtAEO中,AO=,OE=

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD

。

       在ACD中,AD=CD=2,AC=,

。

       ∴點(diǎn)O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

    <blockquote id="wbjtw"><form id="wbjtw"><optgroup id="wbjtw"></optgroup></form></blockquote>
    <u id="wbjtw"></u>
    <abbr id="wbjtw"><table id="wbjtw"></table></abbr>
  • <span id="wbjtw"></span>

    •        ,

             由。設(shè)夾角為

             則。

             ∴二面角A―BC―D的大小為arccos!8分)

         (3)解:設(shè)平面ACD的法向量為

      !11分)

      設(shè)夾角為,則

      設(shè)O到平面ACD的距離為,

      ,

      ∴O到平面ACD的距離為!12分)19.解:(1).

      …共線,該直線過(guò)點(diǎn)P1(a,a),

      斜率為……………………3分

      當(dāng)時(shí),An是一個(gè)三角形與一個(gè)梯形面積之和(如上圖所示),梯形面積是

      于是

      …………………………7分

      (2)結(jié)合圖象,當(dāng)

      ,……………………10分

      而當(dāng)

      ,

      故當(dāng)1<a>2時(shí),存在正整數(shù)n,使得……………………13分

      20.解:(1)

      設(shè)橢圓C的標(biāo)準(zhǔn)方程為,

      為正三角形,

      a=2b,結(jié)合

      ∴所求為……………………2分

      (2)設(shè)P(x,y)M(),N(),

      直線l的方程為得,

      ……………………4分

      ………………6分

      且滿足上述方程,

      ………………7分

      (3)由(2)得, 

      …………………………9分

      ……………………10分

      設(shè)

      面積的最大值為…………………………13分

      21.解:(1)由

      即可求得……………………3分

      (2)當(dāng)>0,

      不等式…(5分)

       

      由于

      ……………………7分

      當(dāng)

      當(dāng)

      當(dāng)

      于是由;………………9分

      (3)由(2)知,

      在上式中分別令x=再三式作和即得

      所以有……………………13分

       

       


      同步練習(xí)冊(cè)答案