題目列表(包括答案和解析)
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當且僅當
(3)令
∴當x > 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=在[6,+∞]上也單調遞增.
∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
π | 2 |
(本小題滿分12分)已知函數是定義在上的奇函數,且,
(1)確定函數的解析式;
(2)用定義證明在上是增函數;
(3)解不等式.
【解析】第一問利用函數的奇函數性質可知f(0)=0
結合條件,解得函數解析式
第二問中,利用函數單調性的定義,作差變形,定號,證明。
第三問中,結合第二問中的單調性,可知要是原式有意義的利用變量大,則函數值大的關系得到結論。
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,N,因此,(),又A∩B=,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.
5.A 提示:由得,當時,△,
得,當時,△,且,即
所以
6.A 7.D 8.A
9.D提示:設3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.
10.A 11.B
12.D 提示:由,又因為是的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內,也即以下兩種情況:
(1);
(2) ;綜合(1)、(2)可得。
二、填空題
13.3 14. w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com