首先.由.解得:或. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=x²-3x+c的圖像與x恰有兩個公共點(diǎn),則c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函數(shù)的圖象與軸恰有兩個公共點(diǎn),則說明函數(shù)的兩個極值中有一個為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

 

查看答案和解析>>

對某班級名學(xué)生學(xué)習(xí)數(shù)學(xué)與學(xué)習(xí)物理的成績進(jìn)行調(diào)查,得到如下表所示:

 

數(shù)學(xué)成績較好

數(shù)學(xué)成績一般

合計(jì)

物理成績較好

18

7

25

物理成績一般

6

19

25

合計(jì)

24

26

50

,解得

0.050

0.010

0.001

3.841

6.635

10.828

 

參照附表,得到的正確結(jié)論是(    )

(A)在犯錯誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績與物理成績有關(guān)”

(B)在犯錯誤的概率不超過的前提下,認(rèn)為“數(shù)學(xué)成績與物理成績無關(guān)”

(C)有的把握認(rèn)為“數(shù)學(xué)成績與物理成績有關(guān)”

(D)有以上的把握認(rèn)為“數(shù)學(xué)成績與物理成績無關(guān)”

 

查看答案和解析>>

已知向量),向量,,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

先閱讀理解下面的例題,再按要求解答:

例題:解一元二次不等式.

解:∵

.

由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有

(1)            (2)

解不等式組(1),得,

解不等式組(2),得,w.w.w.k.s.5.u.c.o.m    

的解集為,

即一元二次不等式的解集為.

    問題:求分式不等式的解集.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時,△,

,當(dāng)時,△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因?yàn)?sub>的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1);

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊答案