當 有最小值等價于 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調(diào)遞減,在單調(diào)遞增,當,即時,,

第二問中,,則設(shè)

,單調(diào)遞增,,,單調(diào)遞減,,因為對一切恒成立, 

第三問中問題等價于證明,,

由(1)可知的最小值為,當且僅當x=時取得

設(shè),,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調(diào)遞減,在單調(diào)遞增,當,即時,,

                 …………4分

(2),則設(shè),

單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,

由(1)可知,的最小值為,當且僅當x=時取得

設(shè),則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學(xué)歸納法.

時,,成立.

假設(shè)當時,不等式成立,

時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

在等差數(shù)列中,,,其中是數(shù)列的前項之和,曲線的方程是,直線的方程是

求數(shù)列的通項公式;

當直線與曲線相交于不同的兩點,時,令,

的最小值;

對于直線和直線外的一點P,用“上的點與點P距離的最小值”定義點P到直線的距離與原有的點到直線距離的概念是等價的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

在等差數(shù)列中,,,其中是數(shù)列的前項之和,曲線的方程是,直線的方程是
(1)      求數(shù)列的通項公式;
(2)   當直線與曲線相交于不同的兩點時,令
的最小值;
(3)   對于直線和直線外的一點P,用“上的點與點P距離的最小值”定義點P到直線的距離與原有的點到直線距離的概念是等價的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項之和,曲線Cn的方程是+=1,直線l的方程是y=x+3.
(1)求數(shù)列{an}的通項公式;   
(2)判斷Cn與l的位置關(guān)系;
(3)當直線l與曲線Cn相交于不同的兩點An,Bn時,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)對于直線l和直線外的一點P,用“l(fā)上的點與點P距離的最小值”定義點P到直線l的距離與原有的點到直線距離的概念是等價的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個橢圓,求出該橢圓與直線l的“距離”.

查看答案和解析>>


同步練習(xí)冊答案